سمینار برای دریافت درجه کارشناسی ارشد “M.Sc” مهندسی کامپیوتر- نرم افزار
عنوان :مروری بر سیستم های تشخیص چهره و الگوریتم های یادگیری
تعداد صفحات : 68
چکیده:
بیـشتر تحقیقـات بوسـیله فیزیولوژیـستهـا و روانـشناسان و مهندسـان روی موضـوعات مختلـف از تشخیص چهره بوسیله ماشین و انسان، صورت گرفته است. اهمیت روش های اتوماتیک تـشخیص چهـره، ما را بر آن داشته است که برای ادامه کار در این زمینـه، تحقیـق کـاملی روی کارهـای انجـام گرفتـه، از پیدایش این رشته از علم کامپیوتر انجام دهیم. اگر چه بسیاری از تئوری ها و فرضیه هـای مطـرح شـده،روی مجموعه ای از تصاویر کوچک، بررسی شده اند، ولی توانسته اند بسیاری دستاوردهای مهمی در ایـن زمینه به همراه داشته باشند.
در این تحقیق، ابتدا تاریخچه ای از موضـوعات مربـوط بـه تـشخیص هویـت، بـا اسـتفاده از خـواص بیومتریک ارائه شده و در ادامه بحث تشخیص چهره را به صورت اختصاصی در میـان مباحـث بیومتریـک ارائه شده است. ساختار و چهارچوب عمومی یک سیـستم تـشخیص چهـره، مهمتـرین موضـوع در آمـاده کردن آن می باشد، همچنین الگوریتم ها و روش هایی که بر اساس آن تشخیص چهره انجام مـی گیـرد،قسمت اصلی این تحقیق می باشد که شامل گروه بندی ها و نوع دیدگاه به مسئله می باشد که در انتهای بحث، استفاده از آموزش و یادگیری و الگـوریتم هـای آن را در بحـث کـشف چهـره، محـدود کـرده ایـم.
مشکلات مربوط به تشخیص چهره، می توانند شامل نور، زاویه دید دوربین، حرکت و سایر موارد محیطـی باشند، که این مشکلات نیز به صورت جداگانه مورد بررسی قرار گرفته اند.
مقدمه:
در دنیای به هم پیوسته و پیچیده امروزی، نگهداری و امنیت اطلاعـات، بـسیار مهـم و مـشکل شـده است، هر چند وقت یکبار در مورد تبهکاری های مربوط کارتهای اعتباری، هک شدن کامپیوترها و نقض امنیت در شبکه ها و دولت ها، چیزهایی می شنویم. در بیشتر این کلاهبرداری ها، افراد خاطی، به نحـوی امنیت سیستم ها را با عبور از سد محافظت های از قبل تعیین شده، مورد دستبرد قرار داده اند.
تکنولوژیهای جدید برای تعیین هویت منحصر هر فرد، بر پایه روش های Biometric بنیـان نهـاده شده اند. که این روش ها، روشهای خودکـاری از بـازبینی و تـشخیص هویـت موجـودات زنـده در زمینـه ویژگیهای فیزیکی از قبیل اثر انگشت یا وضعیت چهره، و یا سایر رفتارهای افراد، از قبیل دست دادن، می باشند. به این دلیل که، ویژگی های فیزیکی خیلی کمتر تغییر می کنند، ولی موارد رفتاری ممکـن اسـت به علت استرس، وضعیت روانی شخص، یا موقعیت شخص به راحتی دستخوش تغییـرات شـوند، در میـان روش ها و متدهای مختلف برای تعیین هویت، روش هایی که از ویژگی های فیزیکی استفاده مـی کننـد، علی رغم مشکلاتی که هنگام پیاده سازی وجود دارد، قابل اعتمادتر از آنهـایی هـستند کـه ویژگـی هـای فیزیولوژیکی(زیستی) را بکار می گیرند.
با بررسی زندگی دیجیتالی بشر، به راحتی متوجه این نکته خواهیم شد که امـروزه بـشر بـا نیازهـایی مواجه است که در سالهای قبل این نیازها وجود نداشت. این نیازها شامل سازمان، گروه و امنیت آنها مـی باشد. همیشه افزایش جمعیت و تحرک آن در همه جهت ها، باعث بالا رفـتن راه هـای انتقـال و اشـتراک اطلاعات، شده است، که این تغییر مکان ها، در ساختارهای پیچیده ای انجام مـی شـوند. همـانطوری کـه تحرک، نشات گرفته از رفتارهای انسانی و اطلاعاتی است، امنیت نیز اطلاعـات شخـصی و مقـادیر آنهـا را شامل می شوند. در محیط هایی که اهمیت امنیت و تشکیلات، افزایش یافتـه اسـت، شناسـایی و تعیـین اعتبار در زمینه های گوناگونی از تکنولوژی ها توسـعه داده شـده انـد. کنتـرل ورودیهـای سـاختمان هـا،کنترل دسترسی در کامپیوترهای عمومی، مثالهایی هستند کـه نـشان دهنـده تـشخیص هویـت و اعتبـار سنجی در جامعه کنونی میباشند.
روش تشخیص چهره (Face Recognition) یکی از چنـدین روش Biometric اسـت کـه دارای دقت بالا بوده و می تواند تا مدت ها قابل اتکا باشد. برخلاف روش های دیگر اعتبار سنجی که لازم بود تـا کاربر حداقل PIN و کلمه عبور، را به یاد داشته باشد، در روش های تشخیص چهره، کاربر خیلی راحت با چهره خودش، می تواند در پروسه اعتبار سـنجی وارد شـود. در حـال حاضـر عـلاوه بـر ایـن کاربردهـای کلاسیک، برای تشخیص چهره، اعتبار سنجی های جدیدی پدیدار شده اند. به طور نمونه، در بانک ها و یـا تأسیسات قضایی که امنیت از سایر ادارات معمولی بالاتر است، امنیت بیشتر توسط کامپیوترهـای زیـادی که امروزه مجهز به چندین دوربین می باشند، انجام می شود. در این حالت، یک نرم افزار تشخیص چهره، به صورت مداوم، آنچه که در جلوی دوربین اتفاق می افتد، را در کنترل داشته و در صورت برخورد بـا هـر گونه وضعیتی خارج از وضعیت از قبل تعیین شده، هشدارهای لازم را اعلام می نماید.
در حال حاضر، چندین روش برای سازماندهی و طبقه بندی زمینـه هـای مختلـف تـشخیص چهـره، امکان پذیر میباشد. به عنوان نمونه، الگوریتم هایی که با چهـره و محـیط آن سـر و کـار دارنـد (هماننـدسیستم های کنترل نشده)، باید با الگوریتم هایی که با سیستم های کنترل شده(هماننـد چـراغ راهنمـا ونورپردازی یک تئاتر) کار می کنند، متمایز گردند. همچنین سیستم هایی که از یک یا چند تـصویر بـرای تشخیص چهره استفاده می کنند، از سیستم هایی کـه از مقـادیر پیوسـته ویـدئویی اسـتفاده مـی کننـد،متمــایز مــیشــوند. در صــورتیکه ایــن تفــاوت هــای ســطح پــایین در مــشکلات ضــروری در Face Recognition حذف شوند، یـک گـروه بنـدی براسـاس سـه حالـت Frontal و Profile و -ViewTolerant ارائه می شود.می توان گفت که الگوریتم های تشخیص چهره، مدل های ساده هندسی را استفاده مـی کننـد، امـا پروسه تشخیص، امروزه در یک علم پیچیده ریاضی و پروسه های Matching وارد شده است. بزرگتـرین پیشرفت آنها در سالیان اخیر، سوق دادن تکنولوژی تشخیص چهره، به صحنههای متاثر از نور مـی باشـد،بدین ترتیب که می توان در شرایط نوری متفاوت نیز، پروسه تشخیص چهره را به نحو مطلوبی انجـام داد.
تشخیص چهره، می تواند برای بازبینی (Verification)و تعیین هویت (Identification)، نیز بـه کـار برده شود.
زمینه های زیاد تجاری، برای ایجاد اینگونه نرم افزارها و امکان دسترسی به تکنولوژی های مورد نیـاز بعد از چندین سال تحقیق، دو دلیل مهم برای تکیـه بـر اهمیـت Face Recognition و ادامـه تـلاش برای داشتن سیستم های قوی تر می باشد.
روش های مطمئن زیادی از تشخیص بیومتریک اشخاص، وجود دارد. برای مثال، روش های آنالیز اثر انگشت یا بررسی عنبیه و شبکیه، اشخاص هم اکنون وجود دارند. از آنجائیکه یک تصویر چهره، می توانـد از روبرو یا نیم رخ باشد، بیشتر اوقات بدون همکاری و حتی اطلاع شخص مورد نظر، عمل می کند. جدول الف، تعدادی از برنامه های مربوط به Face Recognition را نشان می دهد.