شناخت و اصول کار ماشینهای CNC
تعداد صفحات : 65 با فرمت ورد و قابل ویرایش
امروزه قطعات صنعتی دارای پیچیدگی های هندسی متفاوتی می باشند که فقط با استفاده از ماشین ابزارهایی با دقت بالا قابل تولید اند. با پیشرفت چشمگیری که در صنعت الکترونیک در دهه هفتاد میلادی به وجود آمد بکارگیری مینی کامپیوتر ها در صنعت ماشینکاری مرسوم گردید.
ماشین ابزارهایی که به کمک کامپیوتر هدایت می شدند CNC نام گرفتند. به کمک CNC به تدریج دقت مورد نیاز برای تولید قطعات پیچیده در صنایع مختلف مانند هوافضا و قالب سازی حاصل شد. با دست یابی به تلرانسهای بسیار دقیق برای تولید یک قطعه تدریجا اندیشه بالاتر بردن سرعت تولید نیز قوت یافت. با ساخت ابزارهایی با سختی زیاد، شرایط برای بالا بردن نرخ تولید نیز بهبود یافت «2». تا اینکه امروزه با بکارگیری تکنیکهای ماشینکاری با سرعتهای بالا قطعاتی با تلرانسهای دقیق در زمان بسیار کوتاهی تولید می گردند. برای دست یابی به قابلیت ماشین کاری با سرعتهای بالا می باید در زمینه های مختلف مانند طراحی سازه ای، کنترل ارتعاشات خود برانگیخته، یافتن بهترین نرخ براده برداری و کنترل حرکت و سرعت در راستای مسیر مورد نظر به پیشرفتهایی دست یافت.
فصل اول :
Cnc :
کنترل حرکت در راستای یک مسیر در ماشینهای CNC در واحد درونیاب صورت می گیرد. اکثر درونیابهای CNC فقط قابلیت درونیابی در راستای خط و دایره را دارا می باشند. به دلیل اینکه برای ماشینکاری یک مسیر منحنی شکل در حالت عمومی با بکارگیری این نوع درونیابها نیاز به شکسته شدن منحنی به قطعاتی از خط و دایره می باشد، لذا این دو نوع درونیابی به تنهایی پاسخگوی همه کاربردها از جمله ماشینکاری در سرعتهای بالا، نیستند. بنابراین بکارگیری نوع دیگری از درونیابها یعنی درونیابی در راستای یک منحنی ضروری به نظر می رسد. محققین مختلفی در این زمینه به تحقیق پرداخته اند و الگوریتمهای مختلفی را بر مبنای بکارگیری منحنی های پارامتری چند جمله ای در حالت عمومی ارائه داده اند.
Korn در ابتدا با توسعه درونیابی دایره ای، روشهایی را برای درونیابی منحنی ها درجه دو ارائه داد Korn , Yang , Kong, Huang , Yang با بکارگیری منحنی های پارامتری چند جمله ای روشهایی را برای درونیابی یک منحنی ارائه دادند اما این روشها قاعدتاً برای درونیابی یک منحنی درجه سه به کار می رود و در بکارگیری منحنی های درجه بالاتر کارآیی لازم را ندارند. به تدریج با بکارگیری مفاهیم B-Spline ها، Bedi و همکاران روش دیگری را برای درونیابی در راستای یک منحنی ارائه دادند. تقریباً در همین زمان Wang Yang , بر اساس پارامتر سازی طول کمان روش بسیار مناسبی را برای مسأله درونیابی Real-Time در راستای منحنی ارائه دادند.که این روش برای بکارگیری در CNC نسبتاً رواج یافت. با بهبود روش پارامتر سازی طول کمان توسط Wang , Wright این روش برای بکارگیری منحنی های درجه پنج بسیار کارا گردید. همچنین این روش توسط Altintas نیز با بکارگیری پروفیل سرعت متفاوتی استفاده شده اتس. اما تمامی این روشه که مبتنی بر پارامتر سازی طول کمان می باشند روشهای تقریبی هستند.
با بکارگیری منحنی های خاصی بنام منحنی های فیثاغورث – هدوگراف[1] (PH) که زیر مجموعه ای از منحنی های پارامتری چند جمله ای می باشند مسأله درونیابی Real-Time را می توان به صورت تحلیلی نیز حل نمود. این منحنی ها که توسط Farouki , Sakkalis معرفی شدند خواص ریاضی ویژه ای دارند که این خواص قابلیت محاسبه طول کمان به صورت یک عبارت پارامتری چند جمله ای را ممکن می سازند. روشهای درونیابی مختلفی به صورت Real-Time بر مبنای انی منحنی ها توسط Farouki ارائه گردیده است. همچنین با بکارگیری منحنی های فیثاغورث-هدوگراف می توان سرعت پیشروی بهینه را برای حرکت بر روی یک مسیر منحنی با توجه به قدرت ماشین نیز بدست آورد.
همچنین ترکیب متفاوتی از انواع پروفیل های سرعت برای ماشینکاری یک مسیر منحنی بررسی شده و بهترین پروفیل سرعت جهت بکارگیری در ماشینکاری با سرعتهای بالا پیشنهاد می گردد. در بخشهای بعدی مسأله یافتن سرعت پیشروی بهینه بر روی یک منحنی فیثاغورث-هدوگراف با توجه به توانایی و قدرت ماشین مورد استفاده بیان شده و پروفیلهای سرعت متفاوتی برای حل این مسأله بکار گرفته می شوند.
ضمن اینکه با وارد کردن نیروهای برشی در قیود موجود و بکارگیری پروفیلهای سرعت مناسب تر، فرمول بندی جدیدی برای مسأله صورت می گیرد و جوابهای واقعی تری برای حل این مسأله ارائه می گردد. در پایان الگوریتمهای شبیه سازی شده برای درونیابی در راستای خط، دایره و منحنی با بکارگیری تکنیکهای خاصی عملاً بر روی دستگاه CNC موجود پیاده می گردند.