تبلیغات شما تبلیغات شما

آمار سایت

    آمار مطالب
    کل مطالب : 4090
    آمار کاربران
    افراد آنلاین : 9

    کاربران آنلاین

    آمار بازدید
    بازدید امروز : 2,428
    باردید دیروز : 3,749
    گوگل امروز : 16
    گوگل دیروز : 23
    بازدید هفته : 21,800
    بازدید ماه : 61,862
    بازدید سال : 178,883
    بازدید کلی : 6,625,911

آخرین فروش های موفق

شبیه ­سازی عددی سلول خورشیدی مبتنی بر نانو نوار گرافن با استفاده از روش تابع گرین غیرتعادلی(NEGF)

شبیه ­سازی عددی سلول خورشیدی مبتنی بر نانو نوار گرافن با استفاده از روش تابع گرین غیرتعادلی(NEGF)

پایان‌نامه دوره کارشناسی ارشد مهندسی برق-الکترونیک

تعداد صفحات :81

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدید پذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. این انرژی به صورت مستقیم و غیرمستقیم می­تواند به اشکال دیگر انرژی تبدیل گردد

به طور کلی انرژی متصاعد شده از خورشید در حدود  3.8e23 کیلووات در ثانیه می‌باشد. ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی می‌باشد. با توجه به موقعیت جغرافیایی ایران و پراکندگی روستاهای کشور، استفاده از انرژی خورشیدی یکی از مهم­ترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه های برق رسانی و تولید انرژی در مقایسه با دیگر مدل­های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد

 

 جایابی سکسیونرها به منظور کاهش تلفات و مدل سازی بار فیدرها

 

“M.Sc” پایان نامه برای دریافت درجه کارشناسی ارشد قدرت – مهندسی برق

عنوان: جایابی سکسیونرها به منظور کاهش تلفات و مدلسازی بار فیدرها در شبکه های توزیع با فرض بار متغییر در حضور منابع تولید پراکنده

چکیده:

با توجه به گستردگی و همچنین پائین بودن ولتاژ در شبکه های توزیع، تلفات انرژی در این شبکه ها قابل توجه است. همواره تلفات بالاتر از حد استاندارد، از امتیازهای منفی شبکه های توزیع بوده و روش های زیادی نیز درجهت کاهش آن ارایه و اجرا شده است. از جمله تغییر آرایش سیستم به کمک نقاط مانور، که از روشهایی است که طی چند سال اخیر به آن توجه شده است. تغییر در آرایش سیستم از روشهای مؤثر در بهبود شبکه است و با انتقال بار از روی فیدرهای با بار سنگین به فیدرهای با بار سبک حاصل میشود. این کار با باز شدن سکسیونرها (در حالت عادی بسته) و بسته شدن تای سوئیچها (در حالت عادی باز) امکان پذیر است. در شرایط بهره برداری عادی از بازآرایی جهت کاهش تلفات و یا تعدیل بار بین فیدرها، و در شرایط بروز یک خطای دائمی جهت کاهش نواحی بیبرق تا زمان رفع عیب میتوان سود جست.

با توجه به اینکه تمام اتوماتیک کردن شبکه های توزیع هزینه سنگینی را به این شرکتها تحمیل میکند. در این پایان نامه سعی شده، با جایابی بهینه مکان و تعداد سکسیونرها، سرعت بازآرایی را بالا برد تا ضمن کاهش تلفات امکان استفاده از آن برای شرکتهای توزیع میسر شود. همچنین نقش بار متغییر و منابع تولید پراکنده در مکان و تعداد سکسیونرها مورد ارزیابی قرار گرفته است. در این راه از الگوریتم ژنتیک برای بهینه سازی تابع هدف و نرم افزار Matlab جهت پیاده سازی الگوریتم استفاده شده است. شبیه سازی روی یک شبکه 33 شینه نمونه اجرا شده و نتایج آن ارائه شده است.

مقدمه:

مبحث تلفات انرژی از مهمترین مقوله هایی است که صنعت برق با آن مواجه است و توجه به کاهش آن ضرورتی اجتناب ناپذیر است. در کشورهای صنعتی از همان ابتدای شکل گیری این صنعت یعنی سال 1900 میلادی مبحث تلفات مورد توجه قرار گرفت و تاکنون تلاش های زیادی در این زمینه صورت گرفته و با ابداع روش های مختلف و بکارگیری آنها نتایج خوبی بدست آورده است. در کشور ما با توجه به اینکه این صنعت هنوز در زمینه کاهش تلفات تا حد مطلوب راه طولانی را در پیش دارد ضرورت توجه به این امر را متوجه مسئولان و محققان میسازد.

سیستم قدرت را میتوان مجموعه ای از ادوات تولید، انتقال و توزیع دانست که توسط آنها انرژی برق تولید شده و به مصرف کننده تحویل داده میشود. مطالعات و برنامه ریزی سیستم قدرت یکی از مهمترین مواردی است که مهندسان و متخصصان صنعت برق انجام میدهند. یکی از مهمترین قسمتهای سیستم قدرت، که اکثر مشتریان صنعت برق در آنجا قرار دارند، سیستم توزیع میباشد. تلاشهای زیادی در صنعت برق جهت انجام مطالعات بهره برداری و توسعه شبکه توزیع انجام گرفته است.

فصل اول

مقدمه ای بر شبکه های توزیع

1-1- مقدمه

سیستم قدرت را میتوان مجموعه ای از ادوات تولید، انتقال و توزیع دانست که توسط آنها انرژی برق تولید شده و به مصرفکننده تحویل داده میشود. مطالعات و برنامه ریزی سیستم قدرت یکی از مهمترین مواردی است که مهندسان و متخصصان صنعت برق انجام میدهند. یکی از مهمترین قسمتهای سیستم قدرت، که اکثر مشتریان صنعت برق در آنجا قرار دارند، سیستم توزیع میباشد. تلاشهای زیادی در صنعت برق جهت انجام مطالعات بهره برداری و توسعه شبکه توزیع انجام گرفته است.

2-1- معرفی سیستم توزیع

در این قسمت ساختار یک سیستم توزیع و اجزای عمده آن تشریح میگردد. این ساختار عموماً شعاعی میباشد که به ترتیب از بالا دست به پایین دست عبارتند از: مدارهای فوق توزیع، پست های فوق توزیع، فیدرهای فشار ضعیف و سرانجام اتصالات مشترکین.

تعداد صفحه : 96

 آنالیز و شبیه سازی تقویت کننده یک طبقه مایکروویوی سیگنال کوچک

 

”M.Sc“ پایان نامه برای دریافت درجه کارشناسی ارشد مهندسی برق – مخابرات (گرایش میدان و امواج)

عنوان : آنالیز و شبیه سازی تقویت کننده یک طبقه مایکروویوی سیگنال کوچک با استفاده از روش FDTD

چکیده:

در این پایان نامه از روش FDTD جهت شبیه سازی و آنالیز یک تقویت کننده مایکروویوی در فرکانس 10GHz، استفاده شده است. این تقویت کننده شامل منبع AC، مدارات تطبیق ورودی و خروجی و یک MESFET مایکروویوی JS8851 به عنوان دستگاه اکتیو می باشد. روش منابع جریان و منابع ولتاژ معادل جهت مدل کردن عنصر فعال به کار رفته اند و با توجه به مدل سیگنال کوچک MESFET و معادلات حالت مربوطه، شبیه سازی تمام موج با استفاده از روش FDTD انجام می شود و میدان های الکتریکی و مغناطیسی در صفحات فعال به روز می شوند. در نهایت پارامترهای اسکترینگ تقویت کننده با استفاده از تبدیل فوریه پاسخ زمانی به دست می آیند. نتایج حاصل از شبیه سازی با دو روش معادل ولتاژ و جریان با یکدیگر مقایسه شده اند. از آن جایی که این دو روش دوگان یکدیگرند توافق خوبی با یکدیگر دارند. این نتایج با نتایج به دست آمده از روش فرکانسی با نرم افزار مایکروویوآفیس نیز مقایسه شده اند.

مقدمه:

روش های عددی ابزاری بسیار مفید در شبیه سازی مسائل الکترومغناطیسی هستند. از این رو می توان به روش ممان، روش عنصر محدود و روش تفاضلات محدود در حوزه زمان به عنوان مهم ترین این روش ها اشاره کرد. روش عددی FDTD به دلیل قابلیت آن در شبیه سازی انواع شکل های پیچیده، بدون نیاز به حل ماتریس های بزرگ، معادلات غیر خطی و معادلات انتگرالی پیچیده، نسبت به سایر روش های ذکر شده از مزایایی برخوردار است. همچنین با استفاده از این روش می توان با یک بار اجرای برنامه، پاسخ فرکانسی سیستم تحت بررسی را در باند وسیعی در اختیار داشت.

فصل اول: معرفی روش FDTD 

مقدمه:

روش های عددی ابزاری بسیار مفید در شبیه سازی مسائل الکترومغناطیسی هستند. از این رو می توان به روش ممان، روش عنصر محدود و روش تفاضلات محدود در حوزه زمان به عنوان مهم ترین این روش ها اشاره کرد. روش عددی FDTD به دلیل قابلیت آن در شبیه سازی انواع شکل های پیچیده، بدون نیاز به حل ماتریس های بزرگ، معادلات غیر خطی و معادلات انتگرالی پیچیده، نسبت به سایر روش های ذکر شده از مزایایی برخوردار است. همچنین با استفاده از این روش می توان با یک بار اجرای برنامه، پاسخ فرکانسی سیستم تحت بررسی را در باند وسیعی در اختیار داشت. به طور کلی می توان با یک بار اجرای برنامه، پاسخ فرکانسی سیستم تحت بررسی را در اختیار داشت. به طور کلی می توان به مزایای این روش نسبت به سایر روش های عددی این چنین اشاره کرد.

1- این روش نیاز به حل معادلات انتگرالی ندارد و مسائل پیچیده بدون نیاز به معکوس سازی ماتریس های بزرگ قابل حل هستند.

2- این روش برای استفاده در ساختارهای پیچیده، غیر همگن هادی یا دی الکتریک ساده است، زیرا مقادیر ε، μ و σ در هر نقطه از شبکه قابل تعریف است.

3- نتایج حوزه فرکانس با استفاده از نتایج حوزه زمان بسیار ساده تر از روش معکوس گیری از ماتریس به دست می آیند. بنابراین نتایج باند وسیع فرکانسی به راحتی محاسبه می شوند.

4- این روش موجب استفاده از حافظه به صورت ترتیبی می شود. اما این روش دارای معایبی نیز هست که عبارتند از:

1- مش بندی اجسام پیچیده دشوار است.

2- از آن جایی که شبکه به شکل چهار گوش است، مسائل با سطوح منحنی را در بر نمی گیرد و در مدل سازی آن با این روش با خطا مواجه خواهیم شد.

3- در الگوریتم های تفاضل محدود، مقادیر میدان ها فقط در گره های شبکه مشخص است.

4- برای دست یابی به دقت بالا در محاسبات، نیاز به اجرای برنامه در تعداد گام زمانی زیاد است که سبب کندتر شدن اجرای برنامه می شود.

چند دلیل افزایش علاقه مندی به استفاده از FDTD و روش های حل محاسباتی مربوطه اش برای معادلات ماکسول وجود دارد.

1- FDTD از جبر غیر خطی استفاده می کند. با یک محاسبه کاملاً ساده، FDTD از مشکلات جبر خطی که اندازه معادله انتگرالی حوزه فرکانس و مدل های الکترومغناطیسی عنصر محدود را به کمتر از 106 میدان نامشخص الکترومغناطیسی محدود می کند؛ اجتناب می کند. مدل های FDTD با 109 میدان ناشناخته، اجرا می شوند.

2- FDTD دقیق و عملی می باشد. منابع خطا در محاسبات FDTD به خوبی شناخته شده اند و این خطاها می توانند محدود شوند به گونه ای که مدل های دقیقی را برای انواع مسائل عکس العمل موج الکترومغناطیسی فراهم کنند.

3- FDTD طبیعتاً رفتار ضربه ای دارد. تکنیک حوزه زمان باعث می شود تا FDTD به طور مستقیم پاسخ ضربه یک سیستم الکترومغناطیسی را محاسبه کند. بنابراین شبیه سازی FDTD می تواند شکل موج های زمانی بسیار پهن باند یا پاسخ های پایدار سینوسی را در هر فرکانسی در طیف تحریک فراهم کند.

4- FDTD طبیعتاً رفتار غیر خطی دارد. با استفاده از تکنیک حوزه زمان، FDTD پاسخ غیر خطی یک سیستم الکترومغناطیسی را محاسبه می کند.

5- FDTD یک روش سیستماتیک می باشد. با FDTD می توان به جای استفاده از معادلات انتگرالی پیچیده از تولید مش برای مشخص کردن مدل یک ساختار جدید استفاده نمود. به عنوان مثال FDTD نیازی به محاسبه توابع گرین مربوط به ساختار مورد نظر ندارد.

6- ظرفیت حافظه کامپیوتر به سرعت در حال افزایش است. در حالی که این روش به طور مثبت تمام تکنیک های عددی را تحت تاثیر قرار می دهد، این از مزیت های روش FDTD است که گسسته سازی مکانی را روی یک حجم انجام می دهد، بنابراین نیاز به RAM بسیار زیادی دارد.

7- توانایی مصور سازی کامپیوترها به سرعت در حال افزایش است. در حالی که این روش به طور مثبت تمام تکنیک های عددی را تحت تاثیر قرار می دهد. این از مزیت های روش FDTD است که آرایه گام های زمانی از مقادیر میدان را برای استفاده در ویدئو های رنگی برای نمایش حرکت میدان مناسب می سازد.

تعداد صفحه : 118

سمینار برق قدرت: مدل های پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن

 

“M.Sc” سمینار برای دریافت درجه کارشناسی ارشد مهندسی برق – قدرت

عنوان: مدل های پدیده کرونا در خطوط انتقال و نحوه ارزیابی تلفات آن در شبکه های واقعی

چکیده:

هدف از این تحقیق، بررسی پدیده کرونا در خطوط انتقال انرژی الکتریکی، انواع و تأثیرات آن و نیز مدلهای ارائه شده در مورد این پدیده و ارزیابی تلفات ناشی از آن میباشد.

ابتدا اصول تخلیه الکتریکی، انواع آن – شامل تخلیه های مثبت و منفی در الکترودهای مختلف – و نتایج آزمایشگاهی و نظری مربوطه ارائه میگردد. پس از آن پدیده کرونا در خطوط انتقال معرفی میشود. تأثیر انواع گوناگون هادیها در شدت این پدیده، به کمک نتایج تجربی ملاحظه میشود. سپس تأثیرات محیطی از قبیل آب و هوا، ذرات معلق و… مورد تحلیل قرار میگیرد. تلفات کرونا معرفی شده و مدلهای نظری تبیین میشود. در نهایت مطالعاتی که در این حوزه در برخی کشورها از جمله سوئد ارائه می گردد و در انتها پیشنهاداتی در راستای انجام مطالعات جدید و بومی مطرح میشود.

مقدمه:

با افزایش میزان مصرف انرژی در جهان و روبه اتمام رسیدن منابع انرژی فسیلی، توجه ویژهای به مقوله تلفات انرژی شده است.

چنانکه میدانیم پس از تولید انرژی الکتریکی در نیروگاههای متمرکز، بهکمک خطوط انتقال این انرژی به مناطق مصرف منتقل میشود و از طریق پستها و خطوط فوق توزیع و توزیع در اختیار مصرف کننده ها قرار میگیرد. در کلیه حوزه ها اعم از تولید، انتقال و توزیع، تلفات الکتریکی بخش قابل توجهی از انرژی را به گرمای بی حاصل مبدل میسازد.

قسمت عمده ای از این تلفات مربوط به خطوط ولتاژ بالای انتقال است و در این میان پدیده کرونا بیشترین تأثیر را دارد.

برای بهبود وضعیت و کاهش این تلفات، شناخت این پدیده، روش های ارزیابی تلفات ناشی از آن و ارائه مدل ضروری است.

هدف اصلی ما در این پروژه آشنایی با انواع تخلیه های الکتریکی، پدیده کرونا، تبیین مفهوم تلفات کرونا، نحوه ارزیابی و محاسبه تلفات و در نهایت معرفی مدلهای ارائه شده در این مورد است.

فصل اول: پدیده کرونا در خطوط انتقال

1-1) مقدمه

– زمانی که شدت میدان الکتریکی بر روی سطح هادی از قدرت شکست هوا تجاوز می کند، تخلیه های کرونا در سطح هادی خط انتقال شکل می گیرند.

– حتی در یک میدان یکنواخت بین دو الکترود مسطح موازی در هوا نیز، بسیاری شرایط گوناگون بر میزان این قدرت شکست تاثیر می گذارند.

– برخی از این شرایط عبارتند از: فشار هوا، جنس الکترود، وجود بخار آب، پدیده فوتو یونیزاسیون و نوع ولتاژ.

– شکست هوا در این ناحیه سبب ایجاد: نور، نویز صوتی، نویز رادیویی، لرزش هادی، اوزون (O3) و محصولات دیگر می گردد و در ضمن اتلاف انرژی به وجود می آورد که بایستی توسط نیروگاه تأمین شود.

2-1) مکانیسم کرونا

– فرآیندهای تخلیه گازی

تخلیه های الکتریکی معمولا به واسطه میدان الکتریکی که به الکترون های آزاد درون گاز شتاب می دهد، آغاز می شوند. هنگامی که این الکترون ها انرژی کافی به دست آوردند، می توانند از طریق برخورد با اتم ها، یون ها و الکترون های جدید تولید کنند. (یونیزاسیون ضربه)

الکترون های اولیه که فرآیند یونیزاسیون را آغاز می کنند، غالبا به واسطه فوتویونیزاسیون تولید می شوند.

تعداد صفحه : 89

پایان نامه قیمت گذاری توان راکتیو در محیط تجدید ساختار شده

سمینار برای دریافت درجه کارشناسی ارشد مهندسی برق – قدرت

عنوان: قیمت گذاری توان راکتیو در محیط تجدید ساختارشده

چکیده:

سرویس های جانبی در شبکه های به هم پیوسته به منظور انتقال توان بهتر، حفظ قابلیت اطمینان شبکه، بهبود کیفیت توان و همچنین پایداری شبکه از اهمیت بسزایی برخوردار هستند. توان راکتیو به عنوان یکی از مهمترین سرویس های جانبی که به منظور کنترل ولتاژ در شبکه مورد نیاز می باشد، اخیرا از اهمیت ویژه ای برخوردار شده است. هدف این پایان نامه مدلسازی قیمت گذاری توان راکتیو در حالت بهره برداری بهینه از شبکه های تجدید ساختار شده توسط الگوریتم ژنتیک بوده، و به شبیه سازی چند نمونه از سیستم های استاندارد به منظور قیمت گذاری بهینه توان راکتیو (کمترین هزینه خرید برای اپراتور مستقل سیستم) همراه با ارضای کلیه محدودیت های موجود در شبکه می پردازد.

مقدمه:

تا قبل از دو دهه اخیر صنعت برق زیر نظر دولت بود و مصرف کننده نیاز خود را از طریق یک سلسله شرکت های دولتی تامین می کرد که باهم به طور زنجیری ارتباط داشتند. در این ساختار شبکه انتقال برق تولیدی را گرفته و به شرکت های توزیع در سراسر کشور که عموما شامل شرکت های برق منطقه ای می شود، انتقال می داد. شرکت های توزیع، انرژی را به مصرف کننده می فروختند. مبلغ دریافتی از مصرف کنندگان جزء درامدهای دولت محسوب شده و درامدهای شرکت های زنجیری گفته شده از حقوق دولتی تامین می شد اما به تدریج نظر تجدید ساختار بیان شد. در این روش شرکت های دست اندرکار در صنعت برق به چهار بخش مجزا تجزیه می شوند که چند تا یا همگی آنها غیردولتی خواهند بود. این امر موجب بروز مزایایی نسبت به ساختار قدیمی می شود، از جمله اینکه غیر دولتی شدن این شرکت ها باعث ایجاد رقابت در هریک از بخش ها می شود. و رقابت سالم باعث افزایش تلاش برای کاهش هزینه ها، بالا بردن سود، کاهش تلفات و مدرن شدن روش های صنعتی در هر شرکت می شود. به خاطر مزایای پیش بینی شده لزوم تحقیقات سرمایه گذاری در این زمینه آشکارتر شد.

سیاست گزاران و محققان بیان داشته اند که برای به وجود آوردن یک ساختار برق جدید باید مراحل زیر را پیمود:

1- جداسازی

2- تنظیم مقررات

3- رقابت سازی

4- خصوصی سازی

ساختار سنتی:

نظارت و تنظیم قوانین به این معنی است که دولت قوانین و مقرراتی را برای محدود کردن فعالیت و اینکه یک شرکت چگونه عمل می کند تنظیم می کند. این قوانین و مقررات الزاماتی را برای این شرکت به وجود می آورند که عبارتند از:

1- هنجارها و ناهنجارهای مطرح شده در یک شرکت بیان گردد.

2- در قبال چه فعالیت هایی باید قدرت پاسخگویی داشته باشد.

از شاخص های ساختار سنتی صنعت برق می توان به موارد زیر اشاره کرد:

انحصاری: دولت حق فروش برق در یک منطقه را تنها به یک شرکت خاص می دهد.

تعهد تغذیه: شرکت متعهد می شود که تغذیه مناسب برای تمامی مصرف کنندگان خود را تامین کند.

نرخ های تنظیم شده: هر شرکت قیمت های خود را با توجه به قوانین کلی دولتی تنظیم می کند.

بهره برداری با حداقل هزینه: بر پایه صورتحساب مصرف کنندگان، فعالیت های درآمدزای شرکت باید در راستای حداقل شدن درآمد آن شرکت شود.

تضمین نرخ بازگشت: تعهد به بازگشت سرمایه در یک شرکت در صورت رعایت کردن قوانین وضع شده می باشد.

نظارت ناظر: شرکت باید عملکرد مالی خود را با قوانین و مقررات تنظیم شده توسط ناظر دولتی تطبیق دهد.

با ویژگی های مذکور شرکت هایی مشغول به کار بودند که به طور پیوسته کارهای تولید، انتقال، توزیع و فروش برق را انجام می دهند. به طور کلی از عوامل محرک جهانی برای ایجاد روند تجدیدساختار می توان به موارد زیر اشاره کرد:

1- پیشرفت در فناوری تولید و افزایش بازده

2- جایگزینی صنعتی انحصاری با رقابت در تولید

3- انتقال مالکیت عمومی به خصوصی

تعریف تجدیدساختار:

دگرگونی و تغییر قوانین قدیمی و تجدید بنای ساختار سنتی به ساختار نو و تحول یافته را گویند که در مفهوم کلی بیانگر تبدیل یک صنعت انحصاری یا دولتی به حالت رقابتی یا خصوصی است.

تعداد صفحه : 75

پایان نامه شبکه های نوری (تحقیق و بررسی سوییچ های نوری)

 

“M.Sc” سمینار برای دریافت درجه کارشناسی ارشدمهندسی برق – الکترونیک

عنوان:شبکه های نوری ( تحقیق و بررسی سوییچ های نوری)

تعداد صفحات : 129

 

چکیده

هدف ما در این متن آشنایی با قطعات مختلفی است که در شبکه های نوری استفاده می شوند. در این راستا ضمن آشنایی با اصول عملکرد هر قطعه مشخصات اصلی و نیز ساختارهای مختلف آنها را بیان می کنیم. این قطعات شامل لیزر، قفل کننده طول موج، مدولاتور، ترانسپوندر، اینترلیور، مالتی پلکسر / دی مالتی پلکسر، فیبر، کوپلر، تقویت کننده، ایزولاتور، سیرولاتور، سوییچ، تبدیل کننده طول موج، فیلتر، تضعیف کننده و آشکارساز هستند. کریستال نوری یکی از کاندیداهای ساخت ادوات نوری مجتمع با ابعاد کمتر از طول موج نور می باشد. آنها ساختارهای متناوب مصنوعی با ساختار باند نوری مشابه باند الکترونیکی می باشند. که در آن نور وجود ندارد. این به معنی آن است که نقص خطی به عنوان موجبر و نقص نقطه ای به عنوان رزناتور ،که نور در آن به دام می افتد می باشند.

با کار دانشمندان ژاپنی در بهره گیری از کریستال فتونی در ساخت سوییچهای ریز نوری آشنا می شویم. در راستای دستیابی به لاجیک نوری و بی استابیلی نوری با قطعه ای به نام SEED آشنا می شویم در ادامه با نرم افزار کاربردی در طراحی شبکه های نوری آشنا می شویم. بنا بر خواست استاد راهنما جناب دکتر پور مینا مدل لیزر چاه کوانتومی که در شبیه سازی های کامپیوتری به کار می رود و توسط دکتر صالحی کامل شده است را معرفی و شبیه سازی نمودم. چون در مقاله ایشان چند عدد مهم نبود، ضمن محاسبه آنها، مدل دی سی لیزر را نیز که مکمل کار دکتر صالحی می باشد، اضافه نمودم.

مقدمه

در استفاده از مالتی پلکس تقسیم زمانی، نرخهای انتقالی که معمولاً استفاده می شوند 2/5، 10، 40 گیگابیت برثانیه اند. اما مدارات الکترونیکی که انتقال با چنین نرخ هایی را محقق می کنند ضمن پیچیدگی گران نیز هستند. به علاوه برخی مسائل تکنیکی نیز کاربرد این روش را محدود می کند به عنوان نمونه میزان تاثیر پاشندگی رنگی در نرخ بیت 10 گیگابیت برثانیه شانزده بار بیشتر از نرخ بیت 2/5 گیگابیت برثانیه است. همچنین مقادیر بزرگتر توان انتقال که برای نرخ بیت های بیشتر لازم است سبب بروز آثار غیر خطی می شوند که برکیفیت شکل سیگنال تاثیرمی گذارد. پاشندگی مد پلاریزاسیون نیزمسافتی را که نور قادر است بدون خراب شدن طی کند محدود میکند. بنابراین روش دیگر برای افزایش ظرفیت آن است که چندین کانال با طول موجهای مختلف را در کنار هم قرار داده به طور همزمان برروی یک فیبر منتقل کنیم. این روش که تحت عنوان مالتی پلکس تقسیم طول موج شناخته می شود ما را قادر خواهد ساخت که تعدادی زیادی کانالهای بانرخ بیت 2/5 تا 40 گیگابیت بر ثانیه را به یکباره به وسیله یک فیبر انتقال دهیم.

هدف ما در این متن آشنایی با قطعات مختلفی است که در این سیستمها استفاده می شوند. در این راستا ضمن آشنایی با اصول عملکرد هر قطعه مشخصات اصلی و نیز ساختارهای مختلف آنها را بیان می کنیم. این قطعات شامل لیزر، قفل کننده طول موج، مدولاتور، ترانسپوندر، اینترلیور، مالتی پلکسر / دی مالتی پلکسر، فیبر، کوپلر، تقویت کننده، ایزولاتور، سیرولاتور، سوییچ، تبدیل کننده طول موج، فیلتر، تضعیف کننده و آشکارساز هستند.

فصل اول:

1-1) فیبر نوری

فیبر نوری عمل هدایت امواج نور را باحداقل تضعیف انجام می دهد. فیبر نوری شامل هسته ای شیشه ای است که به طور کامل به وسیله یک پوشش شیشه ای با ضریب شکست کمتر احاطه شده است. شیشه ها با عناصر آلاینده مشخصی مخلوط می شوند و به این ترتیب است که ضرایب شکست آنها تنظیم می شود. فیبر شیشه ای قابلیت انتقال نور را با سرعتی حدود دو سوم آن درخلا را داراست. انتقال نور در فیبر نوری براساس اصل بازتابش کلی داخلی صورت می گیرد. بسته به زاویه تابش نور به فصل مشترک دو ماده با ضرایب شکست مختلف مقداری از نور منعکس می شود و بقیه در عبور به محیط دوم شکست می یابد.

بازتابش کلی وقتی صورت میگیرد که پرتوها از ماده ای باضریب شکست بیشتر به ماده ای با ضریب شکست کمتر تابیده شوند و زاویه تابش بیشتر از زاویه بحرانی باشد. زاویه بحرانی زاویه تابشی است که به ازای آن زاویه شکست نور در محیط دوم 90 درجه است. هسته نسبت به پوشش ضریب شکست بزرگتری دارد ولذا پرتوهایی که با زاویه بیشتر از زاویه بحرانی به فصل مشترک برخورد می کنند انعکاس می یابند. چنانچه پرتویی چنین شرطی را برآورده نکند، شکست می یابد با کنترل زاویه ای که نور به داخل فیبر تابانده می شود شرط زاویه بحرانی برآورده می شود.

2-1) فیبر چند مد و تک مد

فیبرهای نوری به دوگروه چند مد و تک مد تقسیم می شوند. فیبرهای چند مد شامل دو دسته فیبرهای با ضریب شکست پله ای و فیبرهای با ضریب شکست تدریجی هستند. در فیبر با ضریب شکست پله ای مقدار ضریب شکست در کل هسته، یکنواخت است و در مرز هسته و غلاف به طور ناگهانی تغییر می کند. توجه به این نکته حائز اهمیت است که دو مد باید مسافتهای مختلفی را برای رسیدن به انتهای فیبر طی کنند. اختلاف زمان رسیدن پرتوهای نور به انتهای فیبر تحت عنوان پاشندگی مدی شناخته می شود و با افزایش مسافت انتشار افزایش می یابد. این پدیده موجب کیفیت نامطلوب سیگنال درگیرنده شده و در نهایت مسافت انتقال را محدود می کند. همین مساله دلیل عدم استفاده از فیبرهای چند مد در فواصل طولانی است.

به منظور جبران ویژگی نامطلوب فیبر چند مد با ضریب شکست پله ای فیبرهای باضریب شکست تدریجی ساخته شدند. در این فیبرها ضریب شکسته هسته به طور تدریجی ازمرکز هسته به سمت بیرون کاهش می یابد و لذا نوری که در نزدیکی مرکز هسته منتشر می شود ضریب شکست بزرگتری را نسبت به نوری که دورتر از مرکز حرکت می کند می بیند. به این ترتیب نوری که مسیر کوتاهتری را می پیماید آهسته تر از نور طی کننده مسیر طولانی تر حرکت میکند و همه پرتوها در مدت زمانی تقریباً یکسان به مقصد رسیده پاشندگی مدی کاهش می یابد. پس نور در فیبر با ضریب شکست تدریجی مسیری منحنی شکل را طی می کند.

گروه دوم فیبرهای نوری یعنی فیبرهای تک مد دارای قطر هسته به مراتب کوچکتر از فیبرهای چند مد هستند و فقط یک مد نوری در داخل هسته منتشرمی شود. بنابراین کیفیت سیگنال به نحو بهتری در طی مسافات طولانی حفظ میشود و پاشندگی مدی به طور قابل توجهی کاهش می یابد. این عوامل منجر به ظرفیت پهنای باند بیشتر نسبت به فیبرها چند مد به دلیل ظرفیت زیاد حمل اطلاعات و تلفات ذاتی کم، برای کاربردهای با مسافات طولانی و پهنای باند زیاد نظیر WDM ارجمند.

انتقال نور در فیبرهای نوری با چندین چالش همراه است که باید مدنظر قرارداده شوند. این چالشها عبارتند از تضعیف یا به عبارتی کاهش شدت سیگنال یا تلفات توان نوری در حین انتشار در فیبر، پاشندگی یاپهن شدگی پالسهای نوری در طی حرکت آنها در طول فیبر، آثار غیرخطی یا آثار انباشته شونده ناشی از برهم کنش نور باماده ای که نور د رآن منتشر می شود که نتیجه اش تغییرات امواج نوری و بر هم کنش بین آنهاست.

تعداد صفحه : 129

 

ارزیابی قابلیت اطمینان تولید در سیستم های تجدید ساختار یافته صنعت برق

پایان نامه جهت دریافت درجه کارشناسی ارشد مهندسی برق – قدرت

عنوان:ارزیابی قابلیت اطمینان تولید در سیستم های تجدیدساختار یافته صنعت برق به کمک نظریه بازی ها

تعداد صفحات : 117

چکیده

روند نوین برنامه ریزی بلندمدت توسعه تجهیزات تولید برق در محیط تجدیدساختار شده این صنعت با توجه به اهداف متفاوت سرمایه گذاران و بهره برداران در این مقاله مورد ارزیابی قرار گرفته است. در این روش شرکت های تولید توان (GenCo) با توجه به سرمایه اولیه خود و با منظور نمودن میزان فروش سالیانه برق و در نظر گرفتن میزان سود بازگشتی داخلی (IRR) در بازار رقابتی، اقدام به تصمیم گیری در قالب یک بازی پویا تا پایان افق برنامه ریزی تولید می نمایند. در این روش بهره بردار مستقل سیستم (ISO)، براساس سیاست های کلی خود، اقدام به ارائه مشوق ها به روش تصاعدی برای توسعه و حمایت از انرژی های نو و مخصوصا برق پاک (بادی) می نماید. جریمه ها و مشوق های تعیین شده از سمت مدیران صنعت برق و دولت ها، نظیر جریمه تأخیر در ساخت واحدهای نماینده تولید، جریمه های مربوط به میزان آلایندگی های تولیدی واحدها، مشوق های تعیین شده جهت بهره گیری از منابع تولید پراکنده و بهره گیری از قراردادهای بلندمدت واحدهای تولید بادی در نهایت سبب دستیابی به بهترین و کاربردی ترین استراتژی نصب واحدهای تولید سنتی و پراکنده در محیط رقابتی صنعت برق می گردد. با استفاده از ابزار ظرفیت معادل (Capacity Credit) نیروگاه های بادی در استراتژی اعلام شده میزان تولید پراکنده اضافه شده معادل نیروگاه های سنتی در توسعه تجهیزات تولید تعیین گشته و بهره بردار مستقل سیستم با استناد به ظرفیت نهایی محاسبه شده و با استفاده از شاخص هایی نظیر ENS و EIR بازار توسعه تولید را مورد پایش قرار می دهد. شبیه سازی مونت کارلو ابزاری است که در مراحل تعیین ظرفیت معادل و محاسبه میزان قابلیت اطمینان نهایی سیستم مورد استفاده قرار گرفته است. به کمک روش ارائه شده تعاملی مطلوب و بازار محور بین طیف مختلف سرمایه گذاران محیط رقابتی صنعت برق و بهره برداران سیستم پیرامون گسترش ظرفیت تولید فراهم می شود.

مقدمه

برنامه ریزی توسعه تولید به عنوان یکی از مهمترین مسائل مطرح در حوزه مطالعات سیستم قدرت، در شکل تاریخی و مبتنی بر انحصار خود به معنی تعیین و نوع زمان بهره برداری از نیروگاه های جدید در جهت تأمین بار پیش بینی شده سیستم با کمترین هزینه، همراه با حفظ سطح معینی از اطمینان پذیری در یک افق زمانی درازمدت بوده است. در این مسیر، برنامه ریزان با بهره گیری از روش های گوناگون پیش بینی و بهینه سازی، همواره می کوشیدند تا با فراهم آوردن منابع تولید نیروی جدید، از هزینه های سرمایه گذاری و بهره برداری از سیستم تا حد امکان بکاهند و میان این هزینه ها و اطمینان پذیری یکنواخت در کل سیستم موازنه برقرار کنند. بدیهی است که این صورت مسأله، مستلزم روند برنامه ریزی و بهره برداری یکپارچه و مجتمع در قلمرو انحصاری سیستم خواهد بود. بر همین اساس است که برنامه ریزی توسعه تولید به عنوان یک مسأله بهینه سازی بزرگ و غیرخطی در حوزه مطالعات سیستم قدرت به تدریج شکل می گیرد و گرداگرد خود مجموعه گسترده ای از مدل ها، روش ها، ایده ها و قیود را پدید می آورد.

طبیعت بلندمدت برنامه ریزی توسعه تولید، حضور و بروز پارامترهای مبهم و نامعلوم مربوط به آینده را در آن اجتناب ناپذیر می کند. بر همین اساس، مطالعات با روندی سریع به سمت افزودن بر دقت پیش بینی ها و ابداع روش های نوینی هدایت می شود که امکان انعطاف پذیری لازم را برای نتایج حاصل از روندهای برنامه ریزی فراهم آورد. با این وجود، ناباوری نسبت به آینده بر نگرانی تصمیم گیران می افزاید و آنان را وادار به تصمیم گیری های محتاطانه می کند.

نتیجه نهایی این برنامه ریزی های محافظه کارانه که بر ساختار انحصاری صنعت مبتنی است در کشورهای توسعه یافته و ثروتمند، فراهم آمدن صنعتی گران قیمت و بزرگ با برخورداری از افزونگی تولید است. اما صنعت برق در کشورهای در حال توسعه دارای وضعیتی کاملا متفاوت است. ناکارآمدی تولید، افزایش سرسام آور هزینه های سرمایه گذاری و بهره برداری که بر دولت ها تحمیل می شود و گهگاه از عهده آن بر نمی آیند و رشد سریع تقاضا برای انرژی، صنعت را در بسیاری از این کشورها در معرض فروپاشی قرار می دهد.

اما، فناوری همچنان در حال پیشرفت است. سال به سال، نیروگاه های بزرگتر با بازده بیشتر و هزینه کمتر وارد مدار می شوند و انگیزه های حفظ ساختار انحصاری را افزایش می دهند، چرا که ساخت نیروگاه های بزرگ نیازمند سرمایه های کلان است. گرچه در پایان این مسیر نیروگاه های بزرگ و پر بازده به راندمانی نزدیک به مقدار نظری بیشینه خود می رسند، اما فناوری در این مرز نمی ایستد. با طراحی و ساخت نیروگاه های گازی، یعنی موتورهای جتی که برای تولید برق اصلاح شده اند، روند پیشرفت فناوری شتاب می گیرد و با توسعه نیروگاه های سیکل ترکیبی، که تلف انرژی را نیز به انرژی مفید تبدیل می کنند، این روند به اوج می رسد. این نیروگاه ها علاوه بر بازده فوق العاده، از امتیازات دیگری نیز برخوردارند. آنها کوچکترند، نصب آنها ساده تر و سریع تر است، آلایندگی کمتری دارند و هزینه های سرمایه گذاری و تولید با آنها کمتر است. به این ترتیب دلایل محکم ساخت و بهره برداری از نیروگاه های بزرگ، یکی پس از دیگری از میان می روند. اکنون، ساختار انحصاری و قانونمند که در حمایت از مصرف کننده، عاملی اساسی به شمار می رفت، به تدریج کارکردی در تضاد با ایده نخستین خود پیدا می کند و به ابزاری در جهت حمایت از انحصارگران ناکارآمد تبدیل می شود. آرام آرام، ایده رقابت در صنعت متولد می شود.

دولت ها برای بهبود کارآمدی و افزایش بهره وری به فروش نیروگاه های تحت مالکیت خود اقدام می کنند. شرکت های یکپارچه عمودی، به چندپاره تقسیم می شوند. مقدمات قانونی و ترتیبات مالی و اقتصادی برای بهره برداری عادلانه از سیستم انتقال برای همه فراهم می شود و به تدریج بازارهایی برای خرید و فروش نیروی برق شکل می گیرند که مبنای کارکردی آنها قانون اقتصادی عرضه و تقاضا و نه معیارهای فنی است. با این وجود، مشکلات و مسائل جدید یکی پس از دیگری رخ می نمایند و پژوهشگران را به چالش می کشند. نیروی برق را نمی توان ذخیره کرد و باید آن را درست در لحظه تولید به مصرف رسانید. همین حقیقتی که به نظر ساده می رسد، باعث افزایش پیچیدگی در بازارهای برق می شود. ساختارهای گوناگونی برای بازار پیشنهاد می شود و همه می کوشند تا ثباتی که برای برنامه ریزی ضروری است در قیمت ها پدید آید، ولی رسیدن به این ثبات چندان ساده نیست. بهای انرژی الکتریکی، ساعت به ساعت و روز به روز شکلی که تصادفی به نظر می رسد، در حال تغییر است و تخصیص درست و عادلانه منابع تولید میان مشتریان به عنوان نخستین چالش مهم فراروی نهادهای مدیریت و قانون گذار صنعت، خودنمایی می کند. به تدریج و با افزایش تقاضای انرژی که ناشی از رشد اقتصادی است، افزونگی نخستین تولید نسبت به مصرف از بین می رود و آرام آرام چالش جدی تری مدیریت صنعت را نگران می کند: فراهم آوردن منابع تولید مورد نیاز برای تأمین درازمدت انرژی.

تعداد صفحه : 117

 

پایان نامه مبدل آنالوگ به دیجیتال با ساختار FOLDING AND INTERPOLATING

پایان نامه برای دریافت درجه کارشناسی ارشد مهندسی برق – الکترونیک

عنوان: مبدل آنالوگ به دیجیتال با ساختار FOLDING AND INTERPOLATING با سرعت بالا، قدرت تفکیک متوسط و توان مصرفی کم

تعداد صفحات : 177

چکیده:

این پروژه مبتنی بر طراحی یک مبدل آنالوگ به دیجیتال در ساختار Folding & Interpolating است که دارای قدرت تفکیک متوسط، سرعت نمونه برداری بالا و توان مصرفی کم است. این گزارش شامل 5 فصل است که شرح آن در زیر آمده است:

در فصل اول به معرفی مبدل های آنالوگ به دیجیتال پرداخته شده است و برخی کاربردهای این مبدل ها در سیستم های مختلف به اختصار شرح داده شده است. و در ادامه آن به شرح برخی مفاهیم و مشخصات مهم در مبدل های A/D پرداخته شده است.

در فصل دوم ساختارهای مختلف مبدل های A/D مورد بررسی قرار گرفته و معایب و مزایای آنها مطرح شده است. در فصل سوم ساختار اصلی طرح یعنی ساختار فولدینگ و درونیاب به طور کلی مورد بحث قرار گرفته است.

در فصل چهارم به طراحی سیستمی مبدل پرداخته شده است. در این فصل یک مدل ریاضی برای کل طرح ارائه شده است و با تحلیل عوامل غیر ایده آل در مدل ارائه شده به بررسی سیستمی کارایی مبدل پرداخته شده است. پارامتر SNDR در این فصل هدف قرار داده شده است. در این فصل از نرم افزار matlab جهت مدل سازی ریاضی استفاده شده است.

در فصل پنجم طراحی مداری مدنظر قرار گرفته است و به طراحی اجزاء مختلف سیستم پرداخته نشده است. و پس از طراحی و به دست آوردن پارامترهای سیستم شبیه سازی کلی انجام گرفته و در نهایت به مقایسه طرح با نمونه های مشابه پرداخته شده است. در این فصل از نرم افزار ADS جهت شبیه سازی مداری استفاده شده است و در فصل ششم نیز نتیجه گیری و پیشنهادات مطرح شده است.

مقدمه:

در دنیای امروز با گسترش روزافزون دنیای دیجیتال باید به دنبال پلی برای ایجاد ارتباط بین دنیای آنالوگ و دیجیتال باشیم. این پل از طریق مبدل های آنالوگ به دیجیتال ساخته می شود. تکنیک های بسیاری برای طراحی مبدل های آنالوگ به دیجیتال وجود دارند که هرکدام از این تکنیک ها دارای امتیازات و محدودیت هایی هستند. در اینجا به معرفی برخی از این تکنیک ها در طراحی مدارات مبدل آنالوگ به دیجیتال پرداخته شده است.

هرکدام از این تکنیک ها ملزومات مداری مربوط به خود را دارد. در بعضی از این تکنیک ها دقت بیشتر مورد نظر بوده و در بعضی دیگر سرعت و در بعضی مواقع هزینه و قیمت بیشترین نقش را دارد. ذکر این نکته ضروری است که قبل از طراحی یک مبدل آنالوگ به دیجیتال باید دانشی کلی در باب انواع تکنیک های موجود داشت، تا با توجه به مزایا و محدودیت های این تکنیک ها و همین طور خصوصیات مبدل آنالوگ به دیجیتال، روشی برگزیده شود که بالاترین بازدهی را داشته باشد. همچنین برای رسیدن به بالاترین کارایی می توان از ترکیب این روش ها نیز استفاده کرد.

فصل اول: معرفی مبدل های آنالوگ به دیجیتال

مبدل های آنالوگ به دیجیتال (ADC) و دیجیتال به آنالوگ (DAC) به منظور ایجاد ارتباط بین سیگنال های آنالوگ و پردازنده های سیگنال (DSP) نیاز هستند، این امر موجب می شود تا بتوان از امتیازات پردازش سیگنال دیجیتال استفاده کرد، زیرا که اکثر سیگنال های مورد استفاده آنالوگ هستند.

1-1) موارد استفاده از ADC های سرعت بالا

1-1-1) ویدئوهای دیجیتال و صفحه های نمایش LCD

عملکرد سیستم های مخابراتی و سرگرمی تا حد زیادی بر پایه پردازش سیگنال ها دیجیتال DSP بنا شده، این در حالی است که سیگنال های فیزیکی که لازم است در ورودی ها و خروجی های این سیستم ها مورد استفاده قرار بگیرند به صورت زمان پیوسته و آنالوگ هستند. از این رو لزوم استفاده از ADC در ورودی ها و همینطور DAC ها در خروجی این سیستم ها احساس می شود.

مدارات ADC در مقایسه با DAC برای رسیدن به سرعت و دقت بالاتر، معمولا توان بالاتر و مدارات پیچیده تر طلب می کند. از این رو ADC ها متناوبا موجب محدودیت در سیستم های پردازش سیگنال می شوند. از آنجایی که محدودیت تبدیل آنالوگ به دیجیتال موجب پایین آمدن کارایی کل سیستم می شود، الگوریتم ها و مدارهایی به صورت متناوب ارائه می شوند و یک زمینه تحقیقاتی بسیار مهم برای آینده قابل پیش بینی، ایجاد شده است.

سیستم های تلویزیون دیجیتال با تکیه بر استاندارد انتقال دیجیتال از یک الگوریتم قدرتمند فشرده سازی تصویر استفاده می کنند تا نرخ انتقال اطلاعات را کاهش دهند. مانند آنچه در شکل 1-1 آمده است، نیاز به یک مبدل آنالوگ به دیجیتال است تا سیگنال آنالوگی که از دوربین می آید را تبدیل کند. پس از پردازش دیجیتال و مدولاسیون، سیگنال به خروجی می رود تا ارسال شود. گیرنده سیگنال ورودی را دمدوله می کند و آن را دوباره به سیگنال آنالوگ تبدیل می کند تا آماده نمایش شود. یک قدرت تفکیک به منظور استفاده در تلویزیون های استاندارد لازم است، که این قدرت تفکیک برای تلویزیون های خاص مانند (HDTV) باید بالاتر و حداقل 10 باشد.

دیگر کاربرد مهم مبدل های آنالوگ به دیجیتال سرعت بالا، در سیستم های نمایشی LCD است. توجه اخیر در نمایش دهنده ها به LCD (کریستال مایع) ها است که جایگزین نمایش دهنده های CRT است. برخلافCRT ها، نمایش دهنده های LCD احتیاج به سیگنال های دیجیتال برای راه اندازی دارند. این در حالی است که برخی منابع ویدئو آنالوگ هستند. از این رو نیاز به یک مبدل آنالوگ به دیجیتال است تا سیگنال آنالوگ ویدئو را به پیکسل های دیجیتال تبدیل کند (شکل 1-2). با توجه به قدرت تفکیک و نرخ بازیابی سرعت تبدیل از ده ها MSPS تا چند صد MSPS تغییر می کند.

2-1-1) تجهیزات اندازه گیری دیجیتال

اسیلوسکوپ های نمونه بردار دیجیتال (DSO)، زمینه دیگری هستند که از مبدل های آنالوگ به دیجیتال سرعت بالا استفاده می شود. یک DSO شامل مدار حالت دهنده سیگنال، یک مبدل آنالوگ به دیجیتال با سرعت بالا، یک حافظه بافر و یک نمایش دهنده است. (شکل 1-3) بسیاری از DSO ها از یک مدار نمونه بردار سرعت بالا با دریچه زمانی کوچک استفاده می کنند تا بتوانند از ورودی های با پهنای باند بالا (در محدود GHz) نمونه برداری کنند. نرخ نمونه برداری ساعت این مدارات، نسبتا پایین و در حدود چندین MSPS است. این تکنیک فقط برای سیگنال های ورودی متناوب با پهنای باند باریک مناسب است. زمانی که لازم است سیگنال های طیف گسترده دیجیتال شوند، مبدل های آنالوگ به دیجیتال با نرخ ساعت بسیار بالا مورد نیاز است. سیگنال های نامتناوب و یا طیف گسترده با توجه به قانون نایکوئیست دیجیتال می شوند. که بیان کننده این است که نرخ نمونه برداری باید از دو برابر پهنای باند سیگنال ورودی بزرگتر باشد.

DSO های دیجیتال به یک تبدیل 8 بیتی نیاز دارند، زیرا که صفحه نمایش به این قدرت تفکیک محدود می شود. به هرحال، به عنوان تأکید بیشتر باید به این نکته اشاره کرد که با توجه به حافظه دیجیتال و آنالیز شکل موج نگه داشته شده، محدودیت قابلیت تفکیک نمایش دهنده بیشتر تعریف نمی شود. بنابراین DSO های جدیدتر از مبدل آنالوگ به دیجیتال 10 تا 12 بیتی استفاده می کنند و بیشتر به عنوان ثبت کننده شکل موج دیجیتال محسوب می شوند تا اسیلوسکوپ.

تعداد صفحه : 177

 

پایان نامه کاربرد شبکه های عصبی در پنهان شکنی تصاویر

 

“M.Sc” سمینار برای دریافت درجه کارشناسی ارشد مهندسی برق – الکترونیک

عنوان: کاربرد شبکه های عصبی در پنهان شکنی تصاویر

تعداد صفحات :54

چکیده:

آنچه پیش رو دارید بررسی پنهان نگاری تصاویر و همچنین مبحث پنهان شکنی با استفاده از شبکه های عصبی میباشد. پنهان نگاری هنر ارتباط پنهانی به وسیله قرار دادن پیام در یک رسانه پوششی با کمترین تغییر قابل درک و پنهانشکنی هنر کشف حضور اطلاعات است.

از ویژگی های سیستم نهان نگارمیتوان به شفافیت، پایداری، نرخ داده، امنیت و… اشاره کرد که بسته به نیازهای سیستم طراحی بر اساس این ویژگیها انجام میشود.

به طور کلی الگوریتم های پنهان نگاری از فضای مکانی یا فضای تبدیل استفاده می کنند و در هر کدام از این فضاها به شیوه های گوناگونی می توان داده ها را پنهان کرد. ازالگوریتم های اولیه نهان نگاری روش LSB است که بیتهای پیام در کم ارزشترین بیت هر پیکسل سیگنال پوشش قرار میگیرند و برای پنهان نگاری در حوزه تبدیل نیز تبدیلاتDFT(Discrete Fourier Transform ،  DCT(Discrete Cosine Transform و DWT(Discrete Wavelet Transform و همچنین تبدیل های چند دقته جداناپذیر از جمله Ridgelet و Curvelet و Contourlet وجود دارند.

در مبحث تحلیل نهان نگاره نیز تحلیلها به دو دسته ی کلی مبتنی بر الگوریتم های خاص و تحلیل های مستقل از الگوریتم تقسیم میشوند. از روشهای آموزش ماشین برای پنهان شکنی میتوان روشهای مبتنی برشبکه های عصبی (NN) و ماشینهای بردار پشتیبان (SVM) را نام برد.

مقدمه:

امروزه مبحث امنیت انتقال اطلاعات، از مسائل مهم در تبادل اطلاعات محرمانه است. در این راستا روش های رمزنگاری و پنهان نگاری و همچنین شیوه های نفوذ مختلف به طور گسترده توجه پژوهشگران را جلب نموده است. اگرچه استفاده از روشهای رمزنگاری توانسته تا حدی جوابگوی نیازها در زمینهی امنیت اطلاعات باشد ولی وضوح این ارتباط زمینه ساز مشکلات دیگری است. هدف پنهان نگاری، مخفی کردن پیام به گونه ای است که حتی وجود پیام نیز محسوس نبوده و تشخیص وجود آن خود مستلزم بکارگیری روشهای علمی میباشد.

در این سمینار به روشهای گوناگون پنهان نگاری و پنهان شکنی تصاویر میپردازیم. پس از بررسی ویژگیهای سیستمهای نهان نگاری و طراحی با توجه به ویژگیهای مورد نظر در فصل اول، در فصل دوم به روش های نخستین استگانوگرافی تصویر از جمله LSB و چند روش نوین استگانوگرافی اشاره شده است. فصل سوم به معرفی و مقایسۀ روشهای نهان نگاری در حوزه های مختلف تبدیل از جمله DCT، Contourlet و Wavelet و… پرداخته و در نهایت در فصل چهارم پنهان شکنی با شبکه های عصبی مصنوعی به اختصار بیان شده است.

فصل اول

مبانی و کاربردهای پنهان نگاری

1-1- پنهان نگاری

Steganography متشکل از دو کلمه یونانی stego به معنای مخفی و graphos به معنای نوشته که با هم معنی نوشته ی مخفی را تداعی می کنند. در واقع پنهان نگاری یا استگانوگرافی هنر برقراری ارتباط پنهانی است و هدف آن پنهان کردن ارتباط به وسیله قرار دادن پیام در یک رسانه پوششی است، به گونه ای که امکان استخراج نبوده و نتوان موجودیت پیام پنهان در رسانه را آشکار ساخت. اطلاعات یا پیام محرمانه ممکن است تصویر، متن، صدا و یا هر داده دیجیتالی دیگر باشد. به اطلاعات میزبان که داده محرمانه در آن مخفی می شود، اطلاعات پوشش گفته می شود. اگر اطلاعات پوشش تصویر باشد به آن تصویر پوششی یا میزبان گفته می شود و به تصویر حاصل از استگانوگرافی، تصویر استگو گفته می شود.

تعداد صفحه : 54

 

دانلود

متن کامل پایان نامه مقطع ارشد مهندسی برق

با عنوان : محفظه محافظ آنتن رادار

تعداد صفحات :83

 

چکیده:

موضوعی که در این تحقیق مطرح خواهد شد مبحث محفظه محافظ آنتن رادار و مسائل و شرائط مربوط به آن است. پوشش های گنبدی شکل آنتن رادار با در نظر گرفتن مشخصه های آیرودینامیک، حرارتی و ساختمانی می بایست یک واسطه مناسب برای بدست آوردن عملکرد الکتریکی مورد نیاز باشند. در این تحقیق در ابتدا انواع محفظه های محافظ معرفی و تلاش گردیده ملاحظات الکتریکی و محیطی مربوط به بهینه کردن عملکرد آنها تشریح گردد. باید در نظر داشت که سطح دیواره های محفظه نیز از پارامترهای تاثیر گذار در عملکرد آنتن رادار است. در طی تحقیق سعی شده عوامل موثر در کاهش کارآئی محفظه آنتن نیز معرفی و دلائل اختلال در عملکرد آنتن رادار به دلیل حضور آنها ارائه شود.

مقدمه:

پوشش های گنبدی شکل آنتن رادار، آنتن ها را در معرض عوامل محیطی حفاظت می کنند. این پوششها با در نظر گرفتن مشخصه های آیرودینامیک، حرارتی و ساختمانی می بایست یک واسطه مناسب برای بدست آوردن عملکرد الکتریکی مورد نیاز باشند. به عبارت دیگر در حالت ایده آل radome ها ضمن آنکه بایست تمام نیازها را تامین نمایند نباید مشخصات عملکرد الکتریکی آنتن را کاهش دهند. مواردی که در مشخصات الکتریکی کارکرد یک محفظه مورد توجه هستند عبارتند از: میزان شکست پرتو، انحراف پترن تلف انتقال و قدرت انعکاس یافته بدلیل حضور radome.

یک radome در معرض فشارهای حرارتی و بارهای هوائی محیط اطرافش قرار می گیرد. فاکتورهائی نظیر باران، یخ، برف، تگرگ و ارتعاش بر ساختار و عملکرد الکتریکی محفظه تاثیرگذارند.

Radome ها در دو دسته عمومی تقسیم بندی می شوند. محفظه های هوائی و محفظه های زمینی و دریائی. سطح مقطع محفظه ها نیز بدین صورت طبقه بندی می شوند: تک لایه های یکنواخت A,B,C sandwich، دی الکتریک های فلزاندود شده و سازه های فضائی.

آنچه در پی خواهد آمد بررسی انواع محفظه ها و سطح مقاطع موجود و عوامل و شرائط الکتریکی و محیطی در کاهش یا بهینه سازی عملکرد آنتن رادار است تا با وجود آنها کارآئی آنتن رادار تحت تاثیر قرار نگیرد.

فصل اول: آشنائی با Radome

1-1- تعریف Radome و عملکرد آن

پوشش های گنبدی شکل آنتن رادار، آنتن ها را از معرض عوامل محیطی حفاظت می کنند. علاوه بر این با در نظر گرفتن مشخصه های آیرودینامیک، حرارتی و ساختمانی radome یک واسطه مناسب برای بدست آوردن عملکرد الکتریکی مورد نیاز می باشد. در حالت ایده آل radome ضمن آنکه تمام نیازها را تامین می نماید نباید مشخصات عملکرد الکتریکی آنتن را کاهش دهد. در عمل، عملکرد الکتریکی radome نمی تواند حداکثر باشد چرا که باید حداقل نیازهای سایر موارد نیز برآورده شود.

ملاحظات الکتریکی

معمولا مشخصات الکتریکی کارکرد یک radome براساس موارد زیر محاسبه می گردد:

– میزان شکست پرتو

– انحراف پترن

– تلف انتقال

– قدرت منعکس شده که بدلیل حضور radome ایجاد می شود.

در کاربردهای اصلی، اثرات افزایش نویز حرارتی سیستم و عدم پلاریزاسیون نیز مهم می باشند. انتقال محور الکتریکی لوپ اصلی بدلیل حضور radome، انحراف پرتو یا خطاهای دهانه دید boresight را پدید می آورد. انحراف پرتو در چاوش مخروطی و آنتهاس منوپالس، از انتقال نقطه Crossover به موقعیت مشابه آن در عدم حضور radome پدید می آید.

افت انتقال برابر با میزان انرژی از دست داده شده بدلیل انعکاس و جذب می باشد. در برخی موارد تغییرات فاز بوسیله radome که به افت گین آنتن کمک می کند، مطرح می گردد. اثر اولیه افت انتقال، کاهش حداکثر برد مفید رادار است.

با ملاحظه معادله برد رادار مشخص می گردد حداکثر برد برای آشکار نمودن یک هدف مشخص، به طور مستقیم متناسب با ریشه مجذور ضریب انتقال قدرت radome می باشد. بنابراین اگر ضریب انتقال قدرت radome، 85 درصد باشد، حداکثر برد آشکار سازی 92 درصد مقدار آن در نبود radome خواهد بود.

امکان دارد انحراف پترن که بوسیله radome پدید می آید، تغییراتی را در پهنای پرتو بیم اصلی کاهش عمق نقاط صفر (null depths) و افزایش ساختار لوپ جانبی پدید آورد.

برای آنتن های منوپالس، نولهای محور دید دهانه boresight به طور ناتمام تکمیل خواهد شد. اگر قدرت منعکس شده توسط radome بیش از ندازه باشد، ممکن است تغییر فرکانس ماگنترون پدید آید و همچنین ممکن است باعث تنزل پترن ها با شکل مخصوص پرتو و افزایش سطوح لوپ جانبی گردد. در کاربردهای اصلی نظیر آنتن های نوع دوپلر cw حتی مقادیر کم قدرت برگشتی (منعکس شده) به آنتن موجب مشکلاتی خواهد شد. انرژی جذب شده توسط radome بر مشخصات انتقال آن تاثیر می گذارد. ضمن آنکه توان جذب شده نویز حرارتی سیستم را افزایش داده و اگر معیاری با اهمیت است باید مورد ملاحظه قرار گیرد.

وقتی که رادار سطوح دارای توان بالا را منتقل می کند، ممکن است انرژی جذب شده توسط radome، حرارت دیواره آن را تا حدی افزایش دهد که مشخصات ساختاری آن به طور جدی تنزل پیدا کند.

تعداد صفحه : 83


تبلیغات شما تبلیغات شما

کدهای اختصاصی