تبلیغات شما تبلیغات شما

آمار سایت

    آمار مطالب
    کل مطالب : 3993
    آمار کاربران
    افراد آنلاین : 5

    کاربران آنلاین

    آمار بازدید
    بازدید امروز : 1,961
    باردید دیروز : 2,701
    گوگل امروز : 26
    گوگل دیروز : 35
    بازدید هفته : 21,266
    بازدید ماه : 52,401
    بازدید سال : 811,692
    بازدید کلی : 6,383,215

آخرین فروش های موفق

 

آماده سازی منطق برنامه

قبل از نوشتن برنامه بايد مراحل حل مسئله را تعيين کنيد. ابتدا مشکل را شناخته، راه حل مربوط به آن را پيدا کنيد. سپس اقدام به نوشتن برنامه نمائيد.

تهيه کد برنامه

کد برنامه (source code) مجموعه عبارات يا دستوراتی است کامپيوتر را هدايت می کند تا عمل موردنظر شما انجام بپذيرد. از يک ويرايشگر متن برای وارد کردن کد برنامه استفاده کنيد. اغلب کامپايلرهای نظير Borland's Turbo C++ و Visual C/C++ همراه با يک محيط مجتمع (IDE) می آيند که اجازه تايپ، کامپايل و لينک برنامه را در يک محيط مناسب می دهند. در غيراينصورت از ويرايشگرهای متن ديگر مانند Edit، Notepad و Microsoft Windows می توانيد استفاده کنيد و برنامه خود را با فرمت ASCII روی ديسک ذخيره نمائيد.

کد برنامه را با پسوند cpp. ذخيره کنيد.

ترجمه کد برنامه

برای ترجمه يک برنامه C/C++ کامپايلرهای مختلفی وجود دارد. نسخه رايگان کامپايلر Borland C++ محيط مجتمع پياده سازی ندارد و يک کامپايلر خط فرمانی است يعنی بايد در محيط سيستم عامل DOS فرمان ترجمه برنامه صادر شود.

مثال. اگر Borland's Turbo C++ را استفاده می کنيد، برای ترجمه برنامه Hello.cpp فرمان زير را در خط فرمان سيستم عامل بايد وارد نمائيد:

bcc Hello.cpp

ترجمه برنامه در کامپايلرهای با محيط مجتمع (مانند Borland C++ 3.1) يا محيط گرافيکی (مانند Microsoft Visual C++) راحت تر صورت می گيرد. کافی است ازمنو گزينه Compile يا Run را انتخاب کنيد.

اگر کامپايلر خطائی در برنامه مشاهده نکرد فايل مقصد حاوی کد زبان ماشين برنامه هم نام برنامه و با پسوند obj. ايجاد می شود. اگر خطائی در برنامه وجود داشته باشد گزارش خطا توسط کامپايلر تهيه می شود در اينصورت بايد به کد برنامه مراجعه کرده خطا را برطرف کنيد.

تهيه برنامه اجرائی

وقتی از توابع کتابخانه ای استفاده می کنيد، فايل مقصد توليد شده بايد با کد مقصد تابع کتابخانه ترکيب شود تا فايل اجرائی نهائی شکل بگيرد. اين فرآيند linking نام دارد که توسط برنامه لينکر (linker) انجام می گيرد. اگر لينکر در اين فرآيند با مشکلی مواجه نشود، يک برنامه اجرائی روی ديسک هم نام برنامه و با پسوند exe. ايجاد می شود.

اجرای برنامه

با توليد برنامه اجرائی، می توانيد آنرا اجرا کنيد. بايد برنامه را تست کنيد تا مطمئن شويد درست کار می کند. اگر نتايجی متفاوت از آنچه انتظار داشتيد دريافت کرديد بايد به قدم اول برگشته علت خطا را پيدا کنيد و کد برنامه را اصلاح کنيد و مجددا برنامه را ترجمه، لينک و اجرا کنيد.

در اکثر کامپايلرها امکان انجام مراحل ترجمه، لينک و اجرا در يک مرحله وجود دارد، گرچه در اينجا به عنوان مراحل جداگانه مطرح شد.


مثال. اگر برنامه Hello.cpp موفق ترجمه و لينک شود فايل های Hello.obj که شامل کد زبان ماشين برنامه و Hello.exe که برنامه اجرائی توليد شده است روی ديسک ايجاد می شود. با اجرای برنامه جمله Hello, World! روی صفحه مشاهده می شود.

 

برای آشنائی سريعتر با ساختار برنامه ++C يک برنامه ساده کوچک در اينجا ارائه می شود که ممکن است در وحله اول کاملا قابل درک نباشد. توضيحات بيشتر درباره برنامه در دنباله آن داده شده است.


مثال. برنامه Hello.cpp يک پيغام را روی صفحه نمايش می دهد.

/* HELLO.CPP */
#include <iostream>
using namespace std;
int main()
{
   //print hello word on the screen
   cout << "Hello World!n";
   return 0;
}


تابع اصلی

در زبان C برنامه از يک سری تابع (function) تشکيل می شود (توضيحات بيشتر درباره تابع). هر برنامه الزاما يک تابع اصلی به نام main دارد که برنامه از آن شروع به اجرا می کند.

نوع برگشتی تابع در خط اعلان تابع و قبل از نام تابع تعيين می شود. که برای تابع اصلی معمولا نوع صحيح يا int درنظر گرفته می شود. چون برخی از سيستم عامل ها نيازدارند برنامه مقداری را به آنها برگرداند تابع main يک عدد صحيح را بر می گرداند تا سيستم عامل متوجه بشود که همه چيز درست است. البته در بعضی موارد تابع اصلی را می توان به صورت void main() هم تعريف کرد. کلمه void مشخص می کند تابع چيزی بر نمی گرداند.

مقداری که تابع بر می گرداند در مقابل دستور return نوشته می شود. اگر تابعی مقداری برنگرداند و از نوع void تعريف شده باشد نيازی به استفاده از دستور return در تابع نيست.

بدنه توابع و بلوک های کد مابين دو کروشه باز و بسته { } قرار می گيرند. کروشه مرز يک بلاک از کد را معين می کند. وقت کنيد که برای هر کروشه باز { يک کروشه بسته } بايد وجود داشته باشد.

int main()
{
   return 0;
}


فايل های ضميمه

معمولا اولين عمل در هر برنامه C++ ضميمه کردن فايل های هدر است. فايل های هدر (include file) فايل هائی شامل تعاريف توابع يا کلاس ها هستند. اگر توابع يا متغيرهائی وجود دارند که در برنامه های مختلف مورد استفاده قرار می گيرند بهتر است در يک فايل هدر قرار داده شوند، سپس فايل هدر در هرجائی که از آن استفاده می شود ضميمه شود.

برای ضميمه کردن يک فايل به برنامه علامت # سپس include و نام فايل ضميمه در داخل < > ذکر می شود.

اولين خط برنامه Hello.cpp فايل هدر iostream.h را ضميمه برنامه می کند.

#include <iostream.h>

تعداد زيادی از فايل های هدر در ++C برای استفاده از توابع کتابخانه ای همراه با نصب کامپايلر در اختيار برنامه نويس قرار می گيرند. يکی از اين فايل ها فايل هدر iostream.h است که توابعی برای عمليات ورودی و خروجی دارد. اگر اين فايل در ابتدای برنامه ضميمه شود کليه کلاس ها و توابع تعريف شده در آن قابل دسترسی هستند.

پسوند .h مشخص مي کند يک فايل هدر است. اگر کامپايلر C را استفاده می کنيد پسوند .h بايد مشخص شود ولی در ++C نياز نيست. البته بهتر است که ذکر شود تا توسط کامپايلرها پشتيبانی شود.


نمايش پيغام

تابع cout برای نمايش داده ها و پيغام ها روی صفحه نمايش بکار می رود. اين توابع در فايل هدر iostream قرار دارد که بايد به برنامه ضميمه شده باشد.

cout << "Hello World!n";

در زبان ++C يک رشته کاراکتری بايد بين دو علامت " " محصور شود

n به کامپايلر می گويد از يک خط جديد شروع کند.


فضای اسمی

فضای اسمی (namespace) اجازه گروه بندی مجموعه ای از توابع يا اشيای سراسری را تحت يک نام می دهد (توضيحات بيشتر درباره فضاهای اسمی). وقتی يک فايل هدر اضافه می شود محتويات آن در فضای اسمی استاندارد std قرار می گيرد. برای دسترسی به کتابخانه های استاندارد درون std بايد از عملگر :: استفاده شود.

مثال. وقتی iostream در برنامه ضميمه شده است برای دسترسی به تابع cout از اين کتابخانه بايد فضای اسمی std قبل از آن و بدنبالش علامت :: تعيين شود:

Std::cout <<"Hello World!n";

البته به سادگی می توان با استفاده از عبارت using فضای اسمی مورد استفاده را در برنامه تعيين کرد و به عناصر درون std تنها با صدازدن نامشان دسترسی پيدا کرد.

وقتی پسوند .h اضافه می شود نيازی به اضافه کردن فضای اسمی استاندارد نيست ولی به طور معمول بهتر است که از استاندارد ANSI/ISO تبعيت بشود و فضای اسمی std توسط عبارت using تعيين شود.

نکته. کامپايلرهای قديمی عبارت using را قبول نمی کنند.


توضيحات

توضيحات (comment) عباراتی هستند که هنگام ترجمه ناديده گرفته می شوند. توضيحات شرح مرحله به مرحله از عمليات برنامه را برای برنامه نويس، يا هر فردی که روی کد برنامه کار می کند، ارائه می دهد.

در ++C دو روش برای ساختن توضيح وجود دارد؛ يک روش که برای توضيحات کوتاه است با علامت // شروع می شود. کامپايلر از اين علامت تا انتهای خط را به عنوان توضيح درنظر می گيرد.

روش ديگر که معمولا برای توضيحات طولانی تر استفاده می شود بستن توضيحات بين علائم /* */ است.

//print hello word on the screen
/* This is my first program in C++ */

نکته. توضيحات يک خطی به دنبال علامت // تنها در کامپايلرهای ++C قابل استفاده است.

 

++C بر مبنای زبان برنامه نويسی C است. زبان C در سال 1972 در آزمايشگاه Bell Telephone نوسط Dennis Ritchie به عنوان زبان پياده سازی برای سيستم عامل يونيکس طراحی شد. مقدار زيادی از برنامه نويسی يونيکس با زبان C انجام شده است. C در نتيجه تکوين پروسه ای است که با يک زبان قديمی تر به نام BCPL شروع شده بود. زبان BCPL زبانی بر اساس زبان B بوده است که توسط Ken Thompson در آزمايشگاه Bell طراحی شده بود.

به دليل اينکه C زبان قدرتمند و انعطاف پذيری بود، سريعا گسترش پيدا کرد. برنامه نويسان شروع به استفاده از آن برای انواع برنامه ها کردند. سازمان های مختلف شروع به پياده سازی نسخه های C خود شدند. تا اينکه در سال 1983، ANSI استاندارد C را تنظيم کرد که به عنوان ANSI Standard C شناخته می شود. کامپايلرهای بعدی C از اين استاندارد پيروی کردند.

زبان برنامه نويسي ++C بر اساس زبان C توسط Bjarne Stroustrup ابداع شد. آنچه امروزه ++C ناميده مي شود از سال 1979 آغاز شده است. نسخه اوليه آن "C with classes" ناميده شد که بعدا به ++C تغيير کرد. ++C کليه ويژگی های زبان C را داراست. تفاوت بين آنها اينستکه ++C شي گرائی را پشتيبانی می کند. البته پيشرفت های ديگری هم دارد برای مثال کار با رشته ها و سروکارداشتن با خطاها در آن قوی تر است.

نسخه اول ++C ابتدا در AT&T در سال 1983 استفاده شد. اولين نسخه تجاری آن در اکتبر 1985 به بازار آمد. در سال 1998 ANSI و ISO متفقا ++C را استاندارد کردند. به همين دليل اغلب ++C محض را ANSI Standard ++C يا ISO Standard ++C می نامند.

با تکامل ++C يک کتابخانه استاندارد هم با آن شکل گرفت. اولين کتابخانه استاندارد ++C کتابخانه stream I/O بود که امکاناتی برای جايگزينی توابع قديمی C مانند printf و scanf مهيا کرد. بعد از آن مهمترين کتابخانه استاندارد کتابخانه Standard Template بود.

توجه داشته باشيد که کد C در کامپايلر ++C کامپايل می شود اما عکس آن صادق نيست و کد ++C لزوما در کامپايلر C کامپايل نمی شود.

دستورات منطقی 8086 عمليات منطقی and، or، xor و not را به صورت بيت به بيت روی عملوندها انجام می دهند.

AND
OR
XOR
NOT
TEST
دستکاری بيت ها


AND

دستورالعمل and عمل and منطقی را روی دو عملوند خود انجام می دهد و نتيجه را در عملوند اول ذخيره می کند. فرم کلی آن به صورت زير است:

and dest, src

طبق جدول زير عمل and روی بيت های متناظر دو عملوند انجام می شود. هر بيت نتيجه در صورتی يک است که بيت های متناظر هر دو عملوند يک باشند در غير اينصورت صفر می شود.

A
B
A and B
1 1 1
1 0 0
0 1 0
0 0 0

دستورالعمل and به شکل های زير می تواند بکار برود:

and register, register
and memory, register
and register, memory
and register, immediate data
and memory, immediate data
and /AL, immediate data

دستورالعمل and روی فلگ های زير تاثير می گذارد:

• فلگ carry و overflow را صفر می کند.
• فلگ های zero، sign و parity با توجه به نتيجه تاثير می پذيرند.

فلگ zero وقتي دو عملوند در هيچ مکانی بيت مشابه نداشته باشند يک می شود.


مثال

mov AX, C123h
and AX, 82F6h

AND Example


دستورالعمل and برای محاسبه سريع باقيمانده يک عدد بر توانی از 2 می تواند استفاده شود. برای پيدا کردن باقيمانده عملوندی بر مقدار 2n کافيست and عملوند با مقدار 2n-1 محاسبه شود.


مثال. دستور زير باقيمانده بر عدد 8 را محاسبه می کند.

and AX, 7


OR

دستورالعمل or عمل or منطقی را روی عملوندهای خود انجام می دهد. فرم کلی آن به صورت زير است:

or dest, src

عمل or، طبق جدول زير، روی عملوندها بيت به بيت انجام می گيرد. هر بيت نتيجه دستور or در صورتی صفر است که بيت های متناظر هر دو عملوند صفر باشند در غير اينصورت يک می شود.

A
B
A or B
1 1 1
1 0 1
0 1 1
0 0 0

دستورالعمل or مشابه عمل and روی فلگ های Carry، Zero، Sign، Overflow و Parity تاثير می گذارد. فلگ zero وقتی يک می شود که هردو عملوند صفر باشند.

عملوندهای دستورالعمل or مشابه دستورالعمل and می تواند ثبات، حافظه يا داده فوری باشد.


مثال.

mov AX, C123h
or AX, E831h

OR Example


XOR

دستورالعمل xor عمل xor منطقی را روی بيت های دو عملوند خود انجام می دهد و نتيجه را در عملوند اول ذخيره می کند. فرم کلی آن به صورت زير است:

xor dest, src

هر بيت نتيجه دستورالعمل xor مطابق جدول زير تنظيم می شد. بيت نتيجه زمانی صفر است که هردو بيت عملوند مشابه هم باشند درغير اينصورت يک می شود.

A
B
A xor B
1 1 0
1 0 1
0 1 1
0 0 0

دستورالعمل xor مشابه عمل and روی فلگ ها تاثير می گذارد. اگر هردو عملوند دستورالعمل مساوی باشند نتيجه صفر می شود و در نتيجه فلگ zero يک می شود.

برای صفر کردن ثبات ها می توان از دستورالعمل xor register, register استفاده کرد که کوتاهتر از دستورالعمل mov register,0 است.


مثال.

mov AX, C123h
xor AX, E831h

XOR Example


NOT

دستورالعمل not مکمل يک عملوند خود را محاسبه و در آن ذخيره می کند. فرم کلي آن به صورت زير است:

not dest

دستورالعمل not بيت های عملوند را عکس می کند؛ صفرها را به يک و يک ها را به صفر تبديل می نمايد.

دستورالعمل not به يکی از دو حالت زير می تواند استفاده شود:

not register
not memory

دستورالعمل not روی هيچکدام از فلگ ها تاثير ندارد.


مثال.

mov AX, C123h
not

NOT Example


TEST

دستورالعمل test مشابه and است و عمل and منطقی را روی دو عملوند خود انجام می دهد با اين تفاوت که نتيجه را جائی ذخيره نمی کند.

test dest, src

فلگ های Carry، Zero، Sign، Overflow و Parity مشابه دستورالعمل and تاثير می پذيرند.

دستورالعمل test برای بررسی يک بودن بيتی می تواند استفاده شود.


مثال. دستور زير مقدار 1 را با ثبات AL به طور منطقی and می کند. اگر بيت شماره 0 ثبات AL صفر باشد نتيجه دستور صفر شده و فلگ zero برابر با يک می شود در غير اينصورت فلگ zero صفر می شود. بررسی فلگ zero بعد از اين اجرای دستور نشان می دهد که بيت صفر ثبات AL يک بوده است يا خير.

test AL, 1

مثال. دستور زيرا برای بررسی بيت های 0، 2 و 8 ثبات DX می تواند استفاده شود. اگر همگی صفر باشند فلگ zero يک می شود.

test DX, 105h


دستکاری بيت ها

از دستورات منطقی برای دستکاری بيت های معينی از عملوند مقصد بدون تاثير روی بيت های ديگر آن می استفاده می شود. برای اين منظور يک ماسک ساخته می شود. يک ماسک مقدار است که بيت های مشخصی از يک عملوند را صفر يا يک می کند بدون اينکه نغييری روی بقيه بيت های آن داشته باشد.

صفر کردن بيت ها با دستورالعمل AND

با دقت در جدول and می توان مشاهده کرد که نتيجه and عدد صفر با هر بيتی برابر با صفر می شود. اگر عدد يک با بيتی and شود نتيجه همان بيت می شود. از اين خاصيت برای صفر کردن بيت های انتخابی يک مقدار بدون تاثير روی بقيه بيت ها می توان استفاده کرد.

مثال. درمثال زير بيت شماره 5 ثبات صفر می شود و بقيه بيت ها بدون تغيير باقی می مانند.

mov AX, C123h
and AX, FFDFh

يک کردن بيت ها با دستورالعمل OR

دستورالعمل or را می توانيد برای يک کردن بيت های انتخابی يک عدد بکار ببريد.

مثال. درمثال زير بيت شماره 3 ثبات يک می شود و بقيه بيت ها بدون تغيير باقی می مانند.

mov AX, C123h
or AX, 8

تعدادی از دستورات 8086 که برای انجام عمليات جمع و تفريق بر روی اعداد صحيح بکار می روند عبارتند از:

ADD
ADC
INC
SUB
SBB
DEC
NEG
CMP


ADD

اين دستورالعمل حاصل جمع صحيح دو عملوند خود را محاسبه و نتيجه را در عملوند اول قرار می دهد.

add dest, src

دستورالعمل add محتوای عملوند src را با عملوند dest جمع می کند و نتيجه را در dest ذخيره می کند (dest := dest + src).

دستورالعمل add به شکل های زير می تواند استفاده شود:

add register, register
add register, memory
add memory, register
add register, immediate data
add memory, immediate data
add AX/AL, immediate data


مثال. دستور زير محتوای ثبات های AX و BX را جمع کرده و حاصل را در ثبات AX ذخيره می کند.

add AX,BX


فلگ های زير با توجه به نتيجه دستورالعمل add تاثير می پذيرند:

• فلگ Overflow اگر يک شوددلالت بر سرريزی در محاسبات علامتدار است.
• فلگ Carry اگر يک شود دلالت بر سرريزی در محاسبات بدون علامت دارد.
• فلگ Sign اگر يک شود نشان می دهد که نتيجه منفی بوده است. يعنی با ارزش ترين بيت عدد يک است.
• فلگ Zero اگر يک شود بيان کننده اين است که نتيجه جمع صفر بوده است.
• فلگ Auxiliary Carry شامل سرريزی BCD از نيبل پايين است.
• فلگ Parity با توجه به 8 بيت پايين نتيجه تغييرمی کند. اگر تعداد بيت های يک نتيجه زوج باشد اين فلگ يک می شود. و اگر تعداد فردی بيت 1 در نتيجه باشد اين فلگ صفر می شود.
روی بقيه فلگ ها اثر ندارند.

نکاتی که درمورد دستور mov بايد رعايت شود در مورد دستور add نيز صادق است. علاوه بر اين که با اين دستور نمی توان يک ثبات سگمنت را با مقداری جمع کرد.

وقتی داده فوری با يک عملوند بايت يا کلمه جمع می شود داده فوری به اندازه عملوند گسترش پيدا می کند.

چون جمع حافظه و حافظه وجود ندارد اگر بخواهيد دو متغير را با هم جمع کنيد بايد عملوندهای حافظه را در ثبات ها منتقل کنيد.


مثال. يک حالت ممکن برای انجام عمل جمع متغيرها به صورت J := K + M + N + P; می تواند به شکل زير باشد:

mov BX, K
mov AX, M
add BX, N
add AX, P
add AX, BX
mov J, AX

مثال. می توان يک ثبات را با محلی از حافظه جمع کرد. اجباری نيست که هردو عملوند ثبات باشد.

mov AX, K
add J, AX

مثال. می توان يک مقدار ثابت را با حافظه جمع کرد.

add J, 2


ADC

دستورالعمل (add with carry) adc مشابه دستورالعمل add است با اين تفاوت که حاصل جمع دو عملوند و فلگ Carry را محاسبه می کند (dest :=dest+source+CF). بنابراين اگر Carry صفر باشد نتيجه مشابه add می شود.


INC

دستورالعمل (increment) inc يک واحد به عملوند خود اضافه می کند. شکل کلی آن به صورت زير است:

inc dest

اين دستورالعمل عدد 1 را با dest جمع و حاصل را در خود dest ذخيره می کند.

دستور inc به شکل های زير می تواند باشد:

inc register
inc memory

عملوند دستور می تواند ثبات يا مکانی از حافظه باشد. اندازه عملوند می تواند 8 يا 16 بيتی باشد.

دستور inc فشرده تر و اغلب سريع تر از دستور add است.

به استثنای فلگ Carry بقيه فلگ ها مشابه دستورالعمل add تغيير می کنند. توجه کنيد که اين دستور بر روی فلگ Carry تاثير ندارد و برای تاثير روی فلگ Carry بايد از دستورالعمل ADD استفاده شود.

افزايش شمارنده حلقه و انديس آرايه يکی از متداولترين کاربردهای دستور inc است.


SUB

دستورالعمل (subtract) sub حاصل تفريق عملوند دوم از عملوند اول را محاسبه می کند. شکل کلی آن به صورت زير است:

sub dest, src

دستورالعمل sub مقدار src را از dest کم کرده حاصل را در dest ذخيره می کند.

مشابه دستورالعمل add، دستور sub به صورت های زير می تواند باشد:

sub register, register
sub register, memory
sub memory, register
sub register, immediate data
sub memory, immediate data
sub AX/AL, immediate data

دستور sub به طريق زير فلگ ها را تغيير می دهد:

• اگر نتيجه صفر شود فلگ Zero يک می شود. اين در حالتی اتفاق می افتد که عملوندها با هم برابر باشند.
• اگر نتيجه منفی شود فلگ sign يک می شود.
• اگر سرريزی رخ دهد فلگ overflow يک می شود.
• فلگ Auxiliary Carry در صورت نياز برای عمليات BCD يک می شود.
• فلگ Parity با توجه به تعداد بيت های يک نتيجه تنظيم می شود.
• فلگ Carry در صورت بروز سرريزی در محاسبات بدون علامت يک می شود.

توجه داشته باشيد که تفريق خاصيت جابجائی ندارد.


مثال. دستورات زير عمل J := J - K; را انجام می دهند.

mov ax, K
sub J, ax

مثال. دستورات زير عمل J := K - J; را انجام می دهند.

mov ax, K
sub ax, J
mov J, ax


بعد از عمل تفريق از مقادير فلگ های Carry، Sign، Overflow و Zero می توان برای بررسی مساوی، نامساوی، بزرگتر يا کوچکتر بودن هر عملوند با ديگری استفاده کرد. جزئيات بيتشر در دستور cmp گفته خواهد شد.


SBB

دستورالعمل (subtract with borrow) sbb مشابه دستور sub است با اين تفاوت که حاصل تفريق عملوند دوم و CF از عملوند اول را محاسبه می نمايد(dest:=dest-src-CF)


DEC

دستورالعمل (decrement) dec يک واحد از عملوند خود کم می کند و حاصل را در خود عملوند دخيره می نمايد.

dec dest

عملوند دستور dec می تواند ثبات يا حافظه باشد.

به استثنای فلگ Carry بقيه فلگ ها مشابه دستورالعمل sub تغيير می کنند.


NEG

دستورالعمل (negate) neg مکمل2 عملوند خود را محاسبه می کند. فرم کلی ان به صورت زير است:

neg dest

دستور neg حاصل تفريق تنها عملوند خود را از عدد صفر را محاسبه کرده (عملوند را منفی می کند) و نتيجه را در آن ذخيره می کند. درنتيجه اجرای دستور علامت عملوند عکس می شود.

عملوند دستور neg می تواند ثبات يا محلی از حافظه باشد:

neg register
neg memory

اين دستور روی فلگ ها به صورت زير تاثيرمی گذارد:

• اگر نتيجه برابر با صفر شود فلگ Carry صفر و در غير اين صورت يک می شود. اگر عملوند صفر بوده باشد دستور اثری روی آن نمی گذارد ولی فلگ Carry را صفر می کند. منفی کردن هر مقدار ديگر فلگ Carry را يک می کند.
• اگر عملوند يک بايتی و حاوی مقدار -128 باشد و يا دوبايتی و حاوی عدد -32768 باشد، منفی کردن عملوند را تغييير نمی دهد اما فلگ Overflow را يک می کند.
• روی فلگ های S، P و Z مانند دستور sub اثر می گذارد.


مثال. دستور زير علامت متغير J عکس می شود.

neg J

مثال. دستورات اسمبلی زير مکمل K را محاسبه و در J ذخيره می کند(J=-k;).

mov AX, K
neg AX
mov J, AX


CMP

دستوالعمل (compare) cmp مانند دستور sub است با اين تفاوت که حاصل تفريق را ذخيره نمی کند(dest-src). نحوه کلی آن به صورت زير است:

cmp dest.src

به صورت های زير می تواند استفاده شود:

cmp register, register
cmp register, memory
cmp memory, register
cmp register, immediate data
cmp memory, immediate data
cmp AX/AL, immediate data

فلگ ها مانند دستورالعمل sub با توجه به نتيجه تفريق تغيير می کنند.

دستور زير را درنظر بگيريد:

cmp AX, BX

اين دستور حاصل AX-BX را محاسبه می کند و با توجه به حاصل فلگ ها را تنظيم می کند. فلگ ها به صورت زير تغيير می کنند و می توانند برای بررسی نتيجه مقايسه بکار برده شوند:

• فلگ Zero يک می شود اگر AX=BX باشد. مساوی يا نامساوی بودن دو عملوند را مشخص می کند.
• فلگ Carry وقتی يک می شود که در محاسبات بدون علامت AX<BX باشد. يعنی تفريق BX از AX احتياج به رقم قرضی داشته باشد.
• فلگ Sign به همراه فلگ Overflow در محاسبات علامتدار نشان می دهد کدام عملوند بزرگتر است.
• دستورالعمل cmp روی فلگ های Parity و Auxiliary Carry هم تاثير دارد ولی بندرت هنگام مقايسه مورد بررسی قرار می گيرند.

به طور خلاصه برای مقايسه دو عملوند با توجه به فلگ های زير می توان نتيجه گيری کرد:

عملوندهای بدون علامت
فلگ ها
AX = BX Z=1
AX ≠ BX Z=0
AX < BX C=1
AX >= BX C=0
عملوندهای علامتدار
فلگ ها
AX = BX Z=1
AX ≠ BX Z=0
AX < BX (S=0 and O=1)or(S=1 and O=0)
AX >= BX (S=0) and (O=0) or (S=1) and (O=1)

برای افزايش اندازه يک مقدار به کلمه يا کلمه مضاعف، با حفظ علامت، از دستورات گسترش استفاده می شود. دستورات گسترش بيت علامت ثبات انباشتگر(AL/AX) را بسط می دهند.

CBW
CWD


در بعضی از محاسبات خصوصا تقسيم و ضرب نياز به افزايش اندازه داده از يک بايت به يک کلمه يا از يک کلمه به يک کلمه مضاعف است. اعداد بدون علامت با اضافه کردن صفر در سمت چپ به سادگی گسترش می يابند. ولی برای افزايش طول يک عدد علامتدار بايد بيت علامت در سمت چپ عدد تکرار شود. دستورات تبديل بيت علامت بسط می دهند.


CBW

دستور (convert byte to word) cbw محتوای بيت شماره هفت ثبات AL را در AX بسط می دهد. يعنی بيت شماره هفت ثبات AL را در کليه بيت های ثبات AH کپی می کند. درنتيجه مقدار رياضی بايت AL به يک کلمهAX گسترش پيدا می کند.

دستور هيچ عملوندی ندارد:

cbw

دستور cbw روی هيچيک از فلگ ها تاثير ندارد.

دستور cbw در محاسبه تقسيم يک بايتی کاربرد دارد.


CWD

دستور (convert word to double word) cwd محتوای بيت شماره پانزده ثبات AX را در کليه بيت های ثبات DX کپی می کند. درنتيجه مقدار رياضی AX به يک کلمه مضاعف در DX:AX گسترش پيدا می کند.

دستور هيچ عملوندی ندارد:

cwd

دستور cbw روی هيچيک از فلگ ها تاثير ندارد.

دستور cbw در عمليات تقسيم دوبايتی نقش بازی می کند.


مثال. برای گسترش مقدار 8 بيتی AL به يک مقدار 32 بيتی در DX:AX دو دستور پشت سر هم نوشته می شوند.

mov AL,85h
cbw
cwd

چون بيت علامت عدد 85h يک است تبديل به عدد FFFFFF85h می شود که 16بيت پايين آن در ثبات AX و 16بيت بالای آن در ثبات DX قرار می گيرد. يعنی AX=FF85h و DX=FFFFh می شود.

دستورالعمل های انتقال داده مقادير را از يک محل به محل ديگر کپی می کنند.

MOV
XCHG
LEA


MOV

ساده ترين دستورالعمل mov است که دارای دو عملوند است. اين دستورالعمل محتوای دومين عملوند خود را در اولين کپی می کند. فرم کلی آن به صورت زير است:

mov Dest, Source

دستور mov يک کپی از Source را گرفته و آنرا در Dest ذخيره می کند. محتوای Source بعد از اجرای دستور تغيير نمی کند ولی مقدار قبلی Dest رونويسی می شود.

دستور mov مشابه دستور انتساب در زبان های سطح بالا است ( Dest := Source; در زبان Pascal يا Dest=Source; در زبان C).

با توجه به نوع عملوندها، انواع مختلفی از دستورالعمل mov را می توان داشت. متداولترین آنها عبارتند از:

mov register, register
mov memory, register
mov register, memory
mov memory, immediate data
mov register, immediate data
mov AX/AL, memory
mov memory, AX/AL
mov segment register, memory 16
mov segment register, register 16
mov register 16, segment register
mov memory 16, segment register

چند موضوع مهم درباره دستور mov را باید همواره بخاطر داشت:

1. انتقال حافظه به حافظه وجود ندارد. يعنی هردو عملوند همزمان نمی توانند عملوند حافظه ای باشند.
2. عملوندها می تواند از نوع بايت يا کلمه باشند. اما هردو عملوند حتما بايد هم اندازه باشند (برای مثال دستور mov AX,BL اشتباه است). اين برای عملوند های حافظه و ثبات هم باید رعایت شود (اگر متغيری را يک بايتی تعريف کنيد و آنرا در ثبات AX منتقل کنيد اسمبلر پيغام خطا صادر می کند).
3. با اين دستور نمی توان يک داده فوری را در يک ثبات سگمنت منتقل کرد.
4. هر دو عملوند نمی توانند ثبات سگمنت باشند.
5. گونه هائی از دستور mov سريع تر و کوتاهتراز بقيه هستند. برای مثال هر دو دستور mov ax, mem و mov reg, mem داده ای را از حافظه به ثبات کپی می کنند اما دستورالعمل اول کوتاهتر و سريع تر از دومی است.
6. می توان يک مقدار فوری را در يک محل حافظه منتقل کرد. در اين حالت داده فوری به اندازه عملوند مقصد گسترش داده می شود (مگراينکه بزرگتر از مقصد باشد که خطا صادر می شود). البته اسمبلر نمی تواند اندازه عملوند حافظه را تعيين کند مگر اينکه عملوند حافظه ای به صورت يک متغير در برنامه اعلان شده باشد. برای حل اين مشکل از عملگر های byte ptr و word ptr برای تعيين اندازه عملوند حافظه ای می توان استفاده کرد.


مثال. دستور زيرداده فوری 10h را به اندازه يک کلمه گسترش داده و در محلی که BX به آن اشاره می کند ذخيره می کند.

mov word ptr [bx], 10h

مثال. دستورات زير داده فوری 40h را در ثبات سگمنت ES ذخيره می کند. ثبات AX به عنوان واسطه بکار رفته است. هر کدام از ثبات همه منظوره را می توان به جای AX بکار برد.

mov AX, 40h
mov ES, AX


دستور mov روی هيچکدام از فلگ ها تاثيری ندارد.


XCHG

دستورالعمل xchg محتوای دو عملوند خود را جابجا می کند. فرم کلی آن به صورت زير است:

xchg Operand1, Operand2

مقدار هردو عملوند در اثر اجرا تغيير می کند.

چهار شکل خاص برای اين دستور وجوددارد:

xchg register, memory
xchg register, register
xchg ax, register16

ترتيب علموندها اهمیت ندارد. می توانید xchg mem,reg یا xchg reg,mem را بنویسید نتیجه فرقی ندارد. اکثر اسمبلرها بطور خودکار کد کوتاهتر را انتخاب می کنند.

هردو عملوند باید یک اندازه باشند.

دستور xchg روی هيچيک از فلگ ها تاثیر نمی گذارد.


LEA

دستورالعمل (load effective address) lea برای مقداردهی اشاره گرها استفاده می شود. فرم خاص آن به صورت زیر است:

lea register16, memory

اين دستور آدرس موثر يک محل خاص از حافظه را درون یک ثبات همه منظوره ذخيره می کند. منظور از آدرس موثر آدرس نهائی حافظه بعد از کلیه محاسبات آدرسی است.


مثال. دستور زير مقدار 1234h را در ثبات AX قرار می دهد.

lea AX, DS:[1234h]


دستور mov ax, immediate data هم همین عمل را انجام می دهد. تفاوت آنها در اين است که دستورالعمل lea محاسبه آدرسی و انتقال داده را همزمان انجام می دهد.


مثال. دستور زير آدرس حاصل از محاسبه BP+SI+4 را درثبات AX قرار می دهد. ابتدا مقادير را بهم جمع کرده سپس در ثبات منتقل می کند.

lea bx, 4[bp+si]


دستورالعمل lea روی فلگ ها تاثير ندارد.

 

مرتب سازی انتخابی (selection sort) روش بهبود يافته مرتب سازی حبابی است.

الگوريتم ابتدا کوچکترين عنصر را توسط جستجوی خطی پيدا می کند و آنرا در اولين محل ليست قرار می دهد، سپس دومين عنصر کوچک را پيدا می کند و به همين ترتيب تا آخر.

پیاده سازی

شبه کد الگوریتم مرتب سازی انتخابی به صورت زیر است:

for i:=0 to n-2 do
   min:=i
   for j:=(i + 1) to n-1 do
      if A[j] < A[min] then
         min:= j
      end if
   end for
   swap (A[i] , A[min])
end for


مثال. در زير مراحل مختلف برای مرتب کردن 5 عنصر "64 25 12 22 11" مشاهده می شود.

First Pass
(64 25 12 22 11) ( 11 25 12 22 64)
Second Pass
(11 25 12 22 64) ( 11 12 25 22 64)
Third Pass
(11 12 25 22 64) (11 12 22 25 64)
Forth Pass
(11 12 22 25 64) (11 12 22 25 64)


ارزیابی کارائی

در مقايسه با الگوريتم های ديگر مرتب سازی انتخابی، به دليل سادگی ساختار، صرف نظر از ترتيب داده های ليست هميشه يک زمان اجرا را می دهد. (n-1) جابه جائی در کل مورد نياز است که نسبت به مرتب سازی حبابی کمتر است و اگر تعداد جابه جائی ها مهم باشد مرتب سازی انتخابی روش مناسبی است. تعداد مقايسه ها در کل برابر است با (n-1)+(n-2)+…+1= Θ(n2).

مرتب سازی انتخابی برای ساختارهائی مانند ليست پيوندی که روش حذف و اضافه کارائی دارند سودمند است. در اين حالت کوچکترين عنصر از ليست حذف شده و سپس به انتهای مقاديری که قبلا مرتب شده اند اضافه می شود.

مثال.

64 25 12 22 11
11 64 25 12 22
11 12 64 25 22
11 12 22 64 25
11 12 22 25 64

 

پردازنده 8086 دارای 14 ثبات 16 بيتی با کاربردهای متفاوت است. اين ثبات ها را می توان به صورت زير گروه بندی کرد:

1. ثبات های همه منظوره : AX، BX، CX و DX
2. ثبات های ايندکس : SIو DI
3. ثبات های آدرسی : BP،SP و IP
4. ثبات های سگمنت : CS، DS، SS و ES
5. ثبات های وضعيتی : Flag

دیاگرام ثبات های ۸۰۸۶

 

یک الگوریتم مرتب سازی الگوریتمی است که عناصر یک لیست را در ترتیب معینی قرار می دهد. کارائی مرتب سازی برای بهینه سازی کاربردهای الگوریتم های دیگر مانند جستجو و ادغام، که به لیست های مرتب نیاز دارند، اهمیت دارد. مرتب سازی برای تهیه خروجی های خوانا برای انسان نیز مفید است.

مرتب سازی حبابی

مرتب سازی انتخابی

مقايسه الگوريتم های مرتب سازی


الگوریتم های مرتب سازی اغلب بر اساس زیر دسته بندی می شوند:

• پیچیدگی زمانی مقایسه عناصر برحسب اندازه لیست (n) . معمولا برای یک الگوریتم مرتب سازی عادی O(n log n) بهترین حالت و O(n2) بدترین حالت است. زمان ایده آل O(n) است.
• پیچیدگی زمانی تعداد جابه جائی ها برای الگوریتم های درجا (in place).
• مصرف حافظه (و استفاده از منابع دیگر سیستم). برخی از الگوریتم های مرتب سازی برون از جا (out place) هستند. که به محل کمکی برای نگهداری داده های موقت علاوه بر داده های در حال مرتب شدن نیاز دارند.
• بعضی از الگوریتم ها بازگشتی یا غیر بازگشتی یا هردو هستند.
• پايداری. الگوریتم های مرتب سازی پايدار ترتیب نسبی رکوردها با کلیدهای مساوی را برقرار می کنند. یعنی اگر دو رکورد R و S با یک کلید وجود داشته باشد و R قبل از S در لیست اصلی آمده باشد، در لیست مرتب شده هم R قبل از S می آید.
• متد کلی. روش مرتب سازی داده ها که می تواند درج،‌ تعویض، انتخاب، ادغام و غیره باشد. برای مثال مرتب سازی حبابی و سریع مرتب سازی تعویضی هستند.


تبلیغات شما تبلیغات شما

دسترسی سریع

کدهای اختصاصی